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Brauer and Fowler

In 1955, Richard Brauer and K. A. Fowler published a paper in
the Annals of Mathematics. With hindsight, this was the first step
on the thousand-mile journey to the Classification of Finite
Simple Groups.
This paper is remembered for the following result (although
they do not state it as a theorem): Given a finite group H with
an involution (element of order 2) in its centre, there are only
finitely many finite simple groups G containing involutions
whose centralisers are isomorphic to H.
This led to the program of classifying simple groups by the
centraliser of an involution, a crucial component of CFSG.
The word “graph” doesn’t occur in the paper. But, given a
finite group G, they defined a metric on the set G# = G \ {1} by
the rule that d(x, y) = d if the shortest sequence
(x = x0, x1, . . . , xm = y) with xi−1xi = xixi−1 has m = d.
Of course, this is just the distance in a graph . . .



The commuting graph

The commuting graph of a group G is the graph with vertex set
G, in which vertices x and y are joined if xy = yx.
A couple of remarks:
I The definition as stated would give us a loop at every

vertex. Sometimes it is important to have these loops; but
usually we will silently neglect them.

I Elements in the centre of G, including the identity, are
joined to all other vertices. For some questions, such as
connectedness, this makes the problem trivial, so (as
Brauer and Fowler did) we remove them; for some
questions (as we will see in a moment) it is important to
keep them; and for yet other questions (such as
perfectness) it makes no difference.

I will assume no loops unless I tell you otherwise; if I exclude
the centre, I speak of the reduced commuting graph.



An example

Here are the commuting graphs of the two non-abelian groups
of order 8: D8 = 〈a, b : a4 = 1, b2 = 1, b−1ab = a−1〉 and
Q8 = 〈a, b : a4 = 1, b2 = a2, b−1ab = a−1〉.
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The two red vertices comprise the centre of the group.



A random walk

Two elements x, y of G are conjugate if y = g−1xg for some
g ∈ G. This is an equivalence relation.

Theorem
The limiting distribution of the random walk on the commuting
graph (with loops) is uniform on conjugacy classes; that is, the
probability of being at x is inversely proportional to the size of the
conjugacy class of G containing x.
This is a special case of Mark Jerrum’s Burnside process (so
called because it is based on the mis-named “Burnside’s
Lemma”). It is of some practical importance in, for example,
computational group theory.
Persi Diaconis has used the idea to argue that the problem of
describing conjugacy classes in high-dimensional Heisenberg
groups has no nice solution.



The power graph

Given a group G, we define the directed power graph of G to
have vertex set G, with an arc x→ y if y is a power of x.
From this we define two undirected graphs:
I the power graph, where we ignore directions and multiple

edges;
I the enhanced power graph, where we join x and y if there

exists z such that z→ x and z→ y.
Note that x and y are joined in the enhanced power graph if the
group 〈x, y〉 generated by x and y is cyclic. Compare the
commuting graph, where x is joined to y if 〈x, y〉 is abelian.



An example
The picture shows the direced power graph, power graph, and
enhanced power graph of the cyclic group of order 6.
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Theorem
For groups G and H, the following are equivalent:
I the directed power groups are isomorphic;
I the power graphs are isomorphic;
I the enhanced power graphs are isomorphic.

However, the directions cannot be uniquely determined, and
the three graphs can have different automorphism groups.



The generating graph
A consequence of CFSG is that any non-abelian finite simple
group can be generated by two elements. This has sparked a lot
of research. These groups G are 1 1

2 -generated, meaning that
given x ∈ G, there exists y ∈ G such that 〈x, y〉 = G.
The generating graph of a group G has vertex set G, with an
edge from x to y if 〈x, y〉 = G. We say that a graph has spread
(at least) k if every k vertices have a common neighbour. Thus
1 1

2 -generation is equivalent to having spread 1.
Burness, Guralnick and Harper showed the following. Here the
reduced generating graph is the induced subgraph on the
non-identity elements.

Theorem
For a finite group G, the following are equivalent:
I the reduced generating graph has spread (at least) 1;
I the reduced generating graph has spread (at least) 2;
I any proper quotient of G is cyclic.



The generating graph of A5

This beautiful picture was drawn by Scott Harper; I’m grateful
to him for permission to use it.



A hierarchy

Rather than isolated results, can we consider these graphs
together?
Denoting the power graph, enhanced power graph, commuting
graph, and non-generating graph (the complement of the
generating graph) of G by Pow(G), EPow(G), Com(G) and
NGen(G), we have the following, where ⊆means “is a
spanning subgraph of”:

Proposition

I For any group G, Pow(G) ⊆ EPow(G) ⊆ Com(G).
I If G is non-abelian or not 2-generated, then

Com(G) ⊆ NGen(G).

Bojan Kuzma and I devised another graph, the deep
commuting graph, which lies between the enhanced power
graph and the commuting graph, but I will not discuss it here.



The power graph is perfect

The directed power graph, with a loop at each vertex, is a
partial preorder, a reflexive and transitive relation; and the
power graph is its comparability graph.

Proposition

The power graph of a finite group is the comparability graph of a
partial order.
We simply refine the preorder by totally ordering each
“indifference class”.
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According to Dilworth’s Theorem, this implies that the power
graph is a perfect graph (that is, all its induced subgraphs have
clique number equal to chromatic number).



Universality

Is there something special about the other graphs in the
hierarchy?

Theorem
I If Γ is the comparability graph of a partial order, then there is a

group G such that Γ is an induced subgraph of Pow(G).
I If X denotes one of EPow, Com or NGen, then for any finite

graph Γ there exists a group G such that Γ is an induced
subgraph of X(G).

So we need to ask different questions:
I For which finite groups G is, for example, the commuting

graph (or one of the others) perfect?
I What is the smallest group such that every n-vertex graph

is embedded in its commuting graph (or one of the others)?



Universality, 2

In fact, a stronger result is true:

Theorem
Given an arbitrary colouring of the edges of a finite complete graph
red, green and blue, there is a group G and an embedding of the
complete graph into G such that
I the red edges belong to EPow(G);
I the green edges belong to Com(G) but not EPow(G);
I the blue edges do not belong to Com(G).

The universality of EPow(G), Com(G), and
Com(G)− EPow(G) are all specialisations of this result.
Probably more results of this kind await discovery.



Cographs and twin reduction

A graph Γ is a cograph if it contains no induced 4-vertex path;
equivalently, it can be built from 1-vertex graphs by the
operations of complementation and disjoint union.
Two vertices in a graph are twins if they have the same
neighbours, possibly excluding each other. Twin reduction is
the process of identifying twin vertices until no twins remain.

Theorem
I The result of twin reduction is unique up to isomorphism. (This

is the cokernel of the original graph.)
I A graph is a cograph if and only if its cokernel is the 1-vertex

graph.

All the graphs in our hierarchy have non-trivial twin relation.
What can be said about their cokernels? Which are cographs?



The groups PSL(2, q)

Let q be a prime power. If q is a power of 2, let
{l, m} = {q− 1, q + 1}; otherwise let
{l, m} = {(q− 1)/2, (q + 1)/2}.

Proposition

The power graph of PSL(2, q) is a cograph if and only if each of l and
m is either a prime power or the product of two distinct primes.
Are there infinitely many q such that these conditions are
satisfied? This is probably a hard number-theoretic problem.
The values of d up to 200 for which Pow(PSL(2, 2d)) is a
cograph are 1, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 31, 61, 101, 127, 167,
199.



Automorphism groups
For each type X of graph in the hierarchy, the automorphism
group of G acts by automorphisms of X(G). You might expect
that there is not too much more.
However, if you compute the number of automorphisms of the
power graph of A5, you come up with the absurdly large
number

668594111536199848062615552000000.

We can make two observations:

Proposition

I For any type X in the hierarchy, if G 6= {1}, then Aut(X(G))
has a non-trivial normal subgroup which is the direct product of
symmetric groups on the twin classes.

I If Γ is a cograph, then Aut(Γ) is built from the trivial group by
the operations of direct product and wreath product with
symmetric groups.



Automorphism groups, 2

However, sometimes interesting things turn up.
If we start with the power graph of the Mathieu group M11,
remove the identity, and apply twin reduction, we get a graph
on 1210 vertices with automorphism group M11, acting with
just four orbits.
Digging into this graph, we find an interesting bipartite graph,
also with automorphism group M11, which is bipartite with
bipartite blocks of sizes 165 and 220, and semiregular with
valencies 4 and 3; it has diameter and girth equal to 10.
So there are jewels among the dross, if you look in the right
place!



The Gruenberg–Kegel graph

The Gruenberg–Kegel graph (GK graph for short), sometimes
called the prime graph, of a finite group G is the graph whose
vertex set is the set of prime divisors of G, with vertices p and q
joined by an edge if G contains an element of order pq. It can be
tiny compared to |G|.
This was introduced by Gruenberg and Kegel to study
indecomposability of the augmentation ideal of the integral
group ring of G. They proved but did not publish a structure
theorem for groups whose GK graph is disconnected. The
theorem was published by Williams (a student of Gruenberg).
GK graphs are now the subject of intensive research.
Natalia Maslova and I proved that there is a function F such
that if a graph on n vertices (labelled by primes) is the GK
graph of more than F(n) groups, then it is the GK graph of
infinitely many. Our function was O(n7); this is probably not
best possible.



The GK graph and the hierarchy

Theorem
Let X be one of Pow, EPow or Com. If G and H are groups with
X(G) ∼= X(H), then G and H have the same GK graph.

Theorem
Let G be a group with Z(G) = {1}. Then the reduced commuting
graph of G is connected if and only if the GK graph of G is connected.

Theorem
Let G be a finite group. Then Pow(G) = EPow(G) if and only if the
GK graph of G is a null graph.



Diameter of the reduced commuting graph

After a lot of research, Iranmanesh and Jafarzadeh conjectured
that there is an absolute upper bound on the diameter of a
connected component of the reduced commuting graph.
This was refuted by Giudici and Parker; however Morgan and
Parker proved it for graphs with trivial centre:

Theorem
I For every d, there is a group whose order is a power of 2, whose

reduced commuting graph has diameter greater than d.
I If G is a group with Z(G) = {1}, then every component of the

reduced commuting graph of G has diameter at most 10.



Want to know more?

There is a huge amount that I haven’t said. If you are interested
to know more,
I I have a long paper in the International Journal of Group

Theory; download it (free) from
https://ijgt.ui.ac.ir/article 25608.html .

I On 8 and 9 June, I am giving a (virtual) intensive course at
the London Taught Course Centre (8 hours of lectures over
a 24-hour period). Register (free) by email to
office@ltcc.ac.uk .

. . . for your attention.


