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Summary

I am going to tell you about two types of synchronization in
finite automata. Both of these have industrial applications: the
first especially for putting things in the correct orientation (e.g.
parts on an assembly line, or satellites in space); the second to
the processing of large quantities of genetic data.

However, I am more concerned with the mathematics than
with the applications.
We will touch on a number of different areas of discrete
mathematics, including weakly perfect graphs, transformation
semigroups and permutation groups, homeomorphisms of
Cantor space, and automorphisms of the shift in symbolic
dynamics.
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Synchronizing automata

An automaton is a machine which has a set Ω of states, and can
read symbols from an alphabet A. It is a very simple machine:
all it does at a given time step is to read a symbol and change
its state.

An automaton can read a word or sequence of symbols; each
symbol causes a state change.
An automaton is synchronizing if there is a word, called a reset
word, such that when the automaton reads this word, it ends
up in a fixed state, no matter where it starts.
Reset words are useful to bring a machine into a known state
before applying further transformations to it.
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An infamous problem

Here is a synchronizing automaton.
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It can be verified that BRRRBRRRB is a reset word (and indeed
that it is the shortest possible reset word for this automaton).

Problem
Show that, if an n-state automaton is synchronizing, it has a reset
word of length at most (n− 1)2.
This is the Černý conjecture, posed in the 1960s and still open.
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Decision is easy

Given a finite automaton, we can decide in polynomial time
whether or not it is synchronizing.

This depends on the following observation:
A finite automaton is synchronizing if and only if, for
any two states s and t, there is a word w = ws,t in the
input alphabet such that reading w from s or t takes the
automaton to the same state.

For such a word reduces by (at least) one the number of
reachable states. So after at most n− 1 such words we arrive at
a single state.
Now the next slide shows how this can be tested.
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The picture shows the earlier example, with the diagram
extended to show all pairs of states.
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Now it suffices to check that there is a path from any vertex on
the right to some vertex on the left; this can clearly be done in
polynomial time.
The resulting word has length O(n2), giving an O(n3) upper
bound for the length of a reset word. The constant has been
improved, but not the exponent 3.
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Transformation monoids

The Černý conjecture seems to have nothing to do with either
graphs or algebraic structures; but there are connections, as we
will see.
Each letter of the alphabet corresponds to a transition on the set
Ω of states. Reading a word corresponds to composing the
transitions. So the set of all possible transitions is closed under
composition and contains the identity map (corresponding to
the empty word): so

An automaton can be represented as a transformation
monoid on the set Ω of states, having a distinguished
set of generators. The automaton is synchronizing if
and only if the monoid contains an element of rank 1.

So the Černý conjecture is a question about transformation
monoids, and semigroups enter the picture.
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Graphs

Graphs in this section will be ordinary simple undirected
graphs, with no loops or multiple edges and no colours or
directions on the edges.

An endomorphism of a graph is a map from the vertex set to
itself which carries edges to edges. The action on nonedges is
not specified; a nonedge may map to a nonedge, or to an edge,
or collapse to a single vertex.
The endomorphisms of a graph form a transformation monoid.
Moreover, as long as the graph has at least one edge, its
endomorphism monoid is not synchronizing, since that edge
cannot be collapsed by any endomorphism.
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Synchronization and endomorphisms

Now we have a pleasant surprise:

Theorem
A transformation monoid M is non-synchronizing if and only if there
is a non-trivial graph Γ on the domain such that M is contained in the
endomorphism monoid of Γ. Moreover, we can assume that the clique
number and chromatic number of Γ are equal.
A graph is trivial if it is complete (all possible edges) or null (no
edges at all). The clique number is the number of vertices in the
largest complete subgraph, while the chromatic number is the
number of colours required to colour the vertices so that
adjacent vertices get different colours.
The chromatic number is at least as large as the clique number.
A graph is sometimes called weakly perfect if equality holds.
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Sketch proof
Since endomorphisms cannot collapse edges, it is clear that the
endomorphism monoid of a non-trivial graph must be
non-synchronizing.

For the converse, let M be a transformation monoid on Ω. We
define a graph Gr(M) as follows: the vertex set is Ω; there is an
edge joining s and t if and only if there is no element m ∈ M
with sm = tm. Now
I Gr(M) is non-trivial if and only if M is non-synchronizing;
I M ≤ End(Gr(M));
I Gr(M) has clique number equal to chromatic number.

The first point is clear; I will outline the second. If it fails, then
some element m ∈ M maps an edge {s, t} to either a single
vertex or a non-edge. The first case contradicts the definition;
in the second case, there is m′ ∈ M with (sm)m′ = (tm)m′, so
mm′ maps s and t to the same place.
For the last point, take an element m ∈ M of minimal rank; then
m is a colouring of the graph and its image is a clique.
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Does this help?

We seem to have replaced an easy problem (deciding whether
an automaton is synchronizing) by a much harder problem
(deciding whether the graph has clique number equal to
chromatic number).

However, the advantage is that we can potentially show that
whole classes of automata are non-synchronizing, from rather
limited knowledge of their transitions.
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Strong synchronization

For what follows, I require a much stronger condition.

An automaton is strongly synchronizing at level n if, when it
reads a word w of length n, the final state depends only on w
and not on the initial state.
In other words, an automaton is strongly synchronizing at level
n if every word of length n is a reset word.
This condition, as we will see, is closely connected with
automorphisms of the shift map in symbolic dynamics.
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De Bruijn graphs

Let n be a positive integer and A a finite alphabet. The de
Bruijn graph G(n, A) has vertex set An. For a ∈ A, w ∈ An, the
target of the edge labelled a with source w is obtained by
removing the first letter of w and appending a.

Here is G(3, {0, 1}):

���� ���� ���� ����
000 010 101 111

���� ����

���� ����

100 110

001 011

�
�
��1

-1

@
@
@R

1

�
�
�	

0
�

0

@
@
@I

0

6

1

?

0

@
@
@R

0

�
�
�	

0

�
�
��

1

@
@
@I

1

. .................................
................................ ............................... ............................... ................................ .................................z

1

. ................................. ................................ ............................... ............................... ................................
.................................y

0

.........................................
...... ...... ......... ...... ...... .......
0

. ....... ...... ...... ......... ...... ......
........................................

1



De Bruijn graphs

Let n be a positive integer and A a finite alphabet. The de
Bruijn graph G(n, A) has vertex set An. For a ∈ A, w ∈ An, the
target of the edge labelled a with source w is obtained by
removing the first letter of w and appending a.
Here is G(3, {0, 1}):

���� ���� ���� ����
000 010 101 111

���� ����

���� ����

100 110

001 011

�
�
��1

-1

@
@
@R

1

�
�
�	

0
�

0

@
@
@I

0

6

1

?

0

@
@
@R

0

�
�
�	

0

�
�
��

1

@
@
@I

1

. .................................
................................ ............................... ............................... ................................ .................................z

1

. ................................. ................................ ............................... ............................... ................................
.................................y

0

.........................................
...... ...... ......... ...... ...... .......
0

. ....... ...... ...... ......... ...... ......
........................................

1



The de Bruijn graph as automaton

Clearly the de Bruijn graph satisfies the condition to be an
automaton: there is a unique arc with any given label leaving
any vertex.

Regarded as an automaton, G(n, A) is strongly synchronizing at
level n: for if it reads a word w = a1 · · · an of length n, the letters
in the label of the initial state all drop off the front, and the final
state is labelled by w.
It seems clear that it is in some sense the “universal” automaton
which is strongly synchronizing at level n. We now turn to this.
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Foldings

A folding of an automaton is an equivalence relation ≡ on the
set of states having the property that, if states s and t are
equivalent, and s′ and t′ are the states resulting from reading a
given letter a from these two states, then s′ and t′ are equivalent.

If ≡ is a folding of an automaton A, then there is a folded
automaton A/≡ whose states are the equivalence classes of
states in A, the transition functions defined in the obvious way.
The defining condition guarantees that these are well-defined.
The following are now easy to see.
I If A is strongly synchronizing at level n, then so is any

folding of A.
I Any automaton which is strongly synchronizing at level n

over the alphabet A is a folding of G(n, A).

Problem
If |A| = k, how many foldings of G(n, A) are there?
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Counting foldings

“I count a lot of things that there’s no need to
count,” Cameron said. “Just because that’s the way
I am. But I count all the things that need to be
counted.”

Richard Brautigan, The Hawkline Monster: A Gothic
Western

I believe that if you properly understand objects of some kind,
you should be able to count them.

How many foldings of the de Bruijn graph with word length
n over an alphabet of size q are there?
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The problem of counting foldings seems to be very difficult. We
have solved it only for n ≤ 2 and a couple of sporadic cases.

The case n = 1 is trivial. The de Bruijn graph G(1, A) has vertex
set A, and for every a ∈ A, an edge labelled a from each vertex
to the the vertex a. So any partition of A gives rise to a folding.
So the number of foldings is B(|A|), the Bell number.
The formula for n = 2 is messy to state, but easy to compute:
the numbers of foldings for |A| = 2, . . . , 7 are 5, 192, 78721,
519338423, 82833228599906, 429768478195109381814.
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Thompson’s groups
Three of the best-studied infinite groups were discovered by
Richard Thompson in the 1950s, and are known as F, T and V.
Here are brief descriptions.

The group F consists of piecewise-linear order-preserving
permutations of the unit interval, where the slopes are powers
of 2 and the points of discontinuity of the slope are dyadic
rationals.
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Representing numbers in the unit interval by dyadic rationals,
we see that the group acts by prefix replacement: in the above
example, 00x 7→ 0x, 01x 7→ 10x, 1x 7→ 11x.
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The group T is similar but preserves the circular order of the
roots of unity.

However our main interest lies in the group V, where the
order-preserving assumption is dropped and arbitrary prefix
replacement is allowed, provided only that the resulting map is
a bijection.

�
�
��

�
��
�

�
�

1
4

3
4 1

1
4

1
2

1

In product replacement form this is 00x 7→ 1x, 01x 7→ 010x,
10x 7→ 011x, and 11x 7→ 00x.



The group T is similar but preserves the circular order of the
roots of unity.
However our main interest lies in the group V, where the
order-preserving assumption is dropped and arbitrary prefix
replacement is allowed, provided only that the resulting map is
a bijection.

�
�
��

�
��
�

�
�

1
4

3
4 1

1
4

1
2

1

In product replacement form this is 00x 7→ 1x, 01x 7→ 010x,
10x 7→ 011x, and 11x 7→ 00x.



The group T is similar but preserves the circular order of the
roots of unity.
However our main interest lies in the group V, where the
order-preserving assumption is dropped and arbitrary prefix
replacement is allowed, provided only that the resulting map is
a bijection.

�
�
��

�
��
�

�
�

1
4

3
4 1

1
4

1
2

1

In product replacement form this is 00x 7→ 1x, 01x 7→ 010x,
10x 7→ 011x, and 11x 7→ 00x.



The group T is similar but preserves the circular order of the
roots of unity.
However our main interest lies in the group V, where the
order-preserving assumption is dropped and arbitrary prefix
replacement is allowed, provided only that the resulting map is
a bijection.

�
�
��

�
��
�

�
�

1
4

3
4 1

1
4

1
2

1

In product replacement form this is 00x 7→ 1x, 01x 7→ 010x,
10x 7→ 011x, and 11x 7→ 00x.



The Higman–Thompson groups

The group V is a finitely presented infinite simple group, the
first known example of such a group.

The construction was generalised by Graham Higman to give a
two-parameter family of such groups, denoted by Gn,r. (Each is
finitely presented, and is simple or has a simple subgroup of
index 2.) They can be defined by product replacement as above;
the alphabet {0, 1} is replaced by an alphabet of n symbols, and
the parameter r indicates that at the first step we choose one of
r initial symbols chosen from a different alphabet.
Pardo showed that Gn,r ∼= Gm,s if and only if m = n and
gcd(r, n− 1) = gcd(s, m− 1).
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Transducers

To relate these groups to the previous discussion, we introduce
the notion of a transducer: this is an automaton which has the
capacity to write as well as read symbols from an alphabet. In
general, a transducer reads a symbol, changes state, and writes
a string of symbols from the alphabet (possibly empty).

In order to avoid trivial cases, we always assume that when a
transducer reads an infinite string of symbols, it writes out an infinite
string: in other words, if we traverse a cycle in the digraph of
the underlying automaton, at least one symbol is written.
As just hinted, a transducer A with a prescribed starting state s
(called an initial transducer) can be regarded as defining a map
from the set Aω of infinite strings over the alphabet A to itself.
We are interested in the case where this map is invertible, and
the inverse is also represented by a transducer.
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The rational group

The rational groupRn over an n-letter alphabet A was defined
by Grigorchuk, Nekrashevych, and Suschanskiı̆.

It is the group of invertible transformations of Aω induced by
initial transducers.
The maps are composed in the usual way; we can define a
composition directly on transducers by using the output of the
first transducer as input to the second.
The definition can be extended to the groupRn,r, which acts on
strings where the first symbol is taken from an auxiliary
alphabet of size r.
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The automorphism group of Gn,r

An invertible initial transducer is said to be bisynchronizing if
the underlying automaton is strongly synchronizing, and the
same holds for the automaton representing its inverse.

Theorem
The automorphism group of Gn,r is the group of transformations of
Aω induced by bisynchronizing initial transducers; so it is a
subgroup of the rational groupRn,r.

This theorem is proved in the paper of Bleak, Cameron,
Maissel, Navas and Olukoya (arXiv 1605.09302).
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Consequences

I mention here two consequences of this analysis.

Theorem
The outer automorphism group of Gn,r has trivial centre and
unsolvable order problem.
The proof involves a connection between Out(Gn,r) and the
automorphism group of the two-sided shift in symbolic
dynamics, allowing known results about the second to be
transferred to the first. I turn now to this.
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Shift maps

The shift map σ comes in two flavours. It acts on either the set
Aω of infinite strings of symbols from A, or on the set AZ of
two-way infinite strings; it moves each symbol one place to the
left. (In the one-way case, the first symbol of the string is lost,
so the shift is onto but not one-to-one; in the second case it is a
bijection.)

For example, if A = {0, 1} and we interpret Aω as the set of
binary decimals representing the unit interval, then the shift
map is the function x 7→ 2x (mod 1).
The shift map is the central character in symbolic dynamics,
arising from a discretisation of dynamics of (for example)
planetary orbits.
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arising from a discretisation of dynamics of (for example)
planetary orbits.
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Automorphisms of the shift

An automorphism of the shift is a homeomorphism of Xω or
XZ (regarded as Cantor space) which commutes with σ.

The connection between automata and automorphsims of the
shift was pointed out by Grigorchuk et al. in 2000.
Automorphisms of the one-sided shift are given by
transducers; in the case of the two-sided shift, we will see that a
little more is required.
Two recent papers by Bleak, Cameron and Olukoya (arXiv
2004.08478 and 2006.01466) use transducers to study the
automorphism groups of the shift maps. Some of the results are
new; several give simpler proofs of known results, or versions
more suitable to actual computation. Here are some examples.
First, it is noted that the automorphism group of the one-sided
shift over an n-letter alphabet embeds into the group of outer
automorphisms of Gn,r: the automorphisms are given by
bisynchronizing transducers.
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In the one-sided case, the orders of torsion elements of Aut(σ)
are orders of automorphism groups of foldings of de Bruijn
graphs.

In the two-sided case, Aut(σ) contains the group generated by
σ as a central subgroup; the quotient is embeddable in the
group of outer automorphisms of Gn,r.
In this case, automorphisms are specified by an annotated
transducer, where the transducer determines the coset of 〈σ〉,
and the annotation determines the element of this coset.
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