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EPPO groups

An EPPO group is a finite group in which every element has
prime power order.

I A group of prime power order is an EPPO group.
I Of the two groups of order 6, the dihedral group is an

EPPO group (all elements have orders 1, 2 or 3) but the
cyclic group is not.

I Thinking about this example, we see that a nilpotent group
(which is the direct product of its Sylow subgroups) is an
EPPO group if and only if it has prime power order.
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History

EPPO groups were introduced by Graham Higman in the
1950s; he classified the soluble ones.

In the 1960s, as a spin-off from the discovery of his infinite
family of simple groups, Michio Suzuki classified the simple
EPPO groups.
Earlier this year, I asked Natalia Maslova if she knew a
classification of all EPPO groups. She sat down and produced
one. I will tell you later why I wanted this.
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Theorem
An EPPO group G satisfies one of the following:

I |π(G)| = 1 and G is a p-group.

I |π(G)| = 2 and G is a soluble Frobenius or 2-Frobenius group (see
later).

I |π(G)| = 3 and G ∈ {A6, PSL2(7), PSL2(17), M10}.
I |π(G)| = 3, G/O2(G) is PSL2(2n) for n ∈ {2, 3} and if

O2(G) 6= {1}, then O2(G) is the direct product of minimal normal
subgroups of G, each of which is of order 22n and as G/O2(G)-module
is isomorphic to the natural GF(2n) SL2(2n)-module.

I |π(G)| = 4 and G ∼= PSL3(4).

I |π(G)| = 4, G/O2(G) is Sz(2n) for n ∈ {3, 5}, and if O2(G) 6= {1},
then O2(G) is the direct product of minimal normal subgroups of G,
each of which is of order 24n and as G/O2(G)-module is isomorphic to
the natural GF(2n) Sz(2n)-module of dimension 4.
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The Gruenberg–Kegel graph

In the 1960s, while investigating integral representations of
finite groups, Karl Gruenberg and Otto Kegel defined the
prime graph of a finite group, now more usually referred to as
the Gruenberg–Kegel graph or GK graph.

The vertex set of the GK graph of a group G is the set of prime
divisors of |G|. (Equivalently, by Cauchy’s Theorem, the set of
prime orders of elements of G.) Two vertices p and q are joined
if G contains an element of order pq. This tiny graph carries a
lot of information about the group.
I A glance at the ATLAS of finite groups shows, for

example, that the Mathieu group M11 has vertex set
{2, 3, 5, 11} and just a single edge {2, 3}.

I G is an EPPO group if and only if its GK graph is a null
graph (that is, has no edges).
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Frobenius and 2-Frobenius groups

The group G is a Frobenius group if it has a proper subgroup H
(called a Frobenius complement) with the property that
H ∩Hg = {1} for all g ∈ G \H. The symmetric group S3 is an
example.

Frobenius showed that, if N is the set of elements lying in no
conjugate of H, together with the identity, then N is a normal
subgroup of G, called the Frobenius kernel. Moreover,
Thompson showed that the Frobenius kernel is nilpotent, and
Zassenhaus determined the structures of Frobenius
complements.
The group G is a 2-Frobenius group if it has a chain of normal
subgroups {1}C N C M C G such that
I M is a Frobenius group with Frobenius kernel N;
I G/N is a Frobenius group with Frobenius kernel M/N.

The symmetric group S4 is an example.
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The theorem of Gruenberg and Kegel
The main theorem of Gruenberg and Kegel was a structure
theorem for groups whose GK graph is disconnected. It was
contained in an unpublished manuscript, and published by
J. S. Williams (a student of Gruenberg) in 1981.

Theorem
Let G be a finite group whose GK graph is disconnected. Then one of
the following holds:
I G is a Frobenius or 2-Frobenius group;
I G is an extension of a nilpotent π-group by a simple group by a

π-group, where π is the set of primes in the connected
component containing 2.

Which simple groups can occur in the second conclusion of the
theorem? This was investigated by Williams, though he was
unable to deal with groups of Lie type in characteristic 2. The
work was completed by Kondrat’ev in 1989, and some errors
corrected by Kondrat’ev and Mazurov in 2000.
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GK graph and EPPO groups

We have seen that G is an EPPO group if and only if its
Gruenberg–Kegel graph has no edges.

So we could regard groups whose GK graph has only a few
edges (in some sense) as being a generalisation of EPPO
groups. If the graph is disconnected, then we have good
structural information about the group (though less than a
complete classification).
I turn now to some other ways to generalise the EPPO groups
using graphs.



GK graph and EPPO groups

We have seen that G is an EPPO group if and only if its
Gruenberg–Kegel graph has no edges.
So we could regard groups whose GK graph has only a few
edges (in some sense) as being a generalisation of EPPO
groups. If the graph is disconnected, then we have good
structural information about the group (though less than a
complete classification).

I turn now to some other ways to generalise the EPPO groups
using graphs.



GK graph and EPPO groups

We have seen that G is an EPPO group if and only if its
Gruenberg–Kegel graph has no edges.
So we could regard groups whose GK graph has only a few
edges (in some sense) as being a generalisation of EPPO
groups. If the graph is disconnected, then we have good
structural information about the group (though less than a
complete classification).
I turn now to some other ways to generalise the EPPO groups
using graphs.



Other graphs

For some different generalisations, I define two more graphs.
In both cases, the vertex set of the graph is the group G.

I g and h are joined in the power graph Pow(G) of G if one
of them is a power of the other.

I g and h are joined in the enhanced power graph EPow(G)
of G if they are both powers of an element k (in other
words, if the group 〈g, h〉 they generate is cyclic).

We see that the edge set of Pow(G) is contained in that of
EPow(G). (In graph theory language, Pow(G) is a spanning
subgraph of EPow(G).)
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EPPO groups reappear

Theorem
The finite group G satisfies Pow(G) = EPow(G) if and only if G is
an EPPO group.

Proof.
If G fails to be an EPPO group, then it contains an element g of
order pq for some primes p and q. Then gp and gq are joined in
the enhanced power graph (since both are powers of g) but not
in the power graph.
Conversely, if G is an EPPO group, and 〈g, h〉 is cyclic, then it
has prime power order, and so one of g and h generates this
group, say g; then h is a power of g.
Thus the classification of EPPO groups gives us the groups G
for which Pow(G) = EPow(G).
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Generalisations

Let p be any graph parameter which is monotonic: that is,
adding edges to a graph cannot decrease the value of p.

Then p(Pow(G)) ≤ p(EPow(G)). Asking for which groups
equality holds is a generalisation of asking for which groups
Pow(G) = EPow(G), that is, the EPPO groups.
Here is a fairly easy example. The clique number of a graph is
the size of the largest complete subgraph.

Theorem
For a finite group G, the power graph and enhanced power graph have
equal clique number if and only if the largest order of an element of G
is a prime power.
Clearly this class of groups includes the EPPO groups!
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An example

For which prime powers q do the power graph and enhanced
power graph of PGL(2, q) have the same clique number?

The maximal order of an element in this group is q + 1, so the
necessary and sufficient condition is that q + 1 is also a prime
power.
According to the Catalan conjecture, this occurs only in one of
the following cases:
I q is a power of 2 and q + 1 is a Fermat prime;
I q is a Mersenne prime and q + 1 is a power of 2;
I q = 8, q + 1 = 9.

(The Catalan conjecture asserts that the only solution of
xa − yb = 1 in positive integers x, y, a, b with a, b > 1 is
32 − 23 = 1. It was proved by Mihăilescu in 2002.)
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Matching number

I will illustrate with one somewhat striking example. The
matching number µ(Γ) of a graph Γ is the maximum number of
pairwise disjoint edges in Γ. This is clearly a monotonic graph
parameter.

With V. V. Swathi and M. S. Sunitha from Calicut, I proved:

Theorem
For any finite group G, the matching numbers of Pow(G) and
EPow(G) are equal.
The small surprise is that we cannot calculate the matching
number of Pow(G) for all groups G, merely give upper and
lower bounds.
The strategy of the proof is to show that, given a matching in
the enhanced power graph, we can replace its edges by edges
of the power graph to find another matching of the same size.
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Cographs

To describe the other generalisation, we have to make a detour.

A cograph is a graph which doesn’t contain the 4-vertex path as
an induced subgraph. These are also referred to as
complement-reducible graphs, hereditary Dacey graphs, or
(my favourite) N-free graphs. The variety of names indicate the
importance of this class.
Since the path P4 is isomorphic to its complement, the class of
cographs is self-complementary. In fact, it is the smallest class
of graphs containing the 1-vertex graph and closed under
disjoint union and complementation. This means that the class
has very nice algorithmic properties, which don’t concern us
here.
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The power graph of a p-group is a cograph

Recall that in the power graph, g and h are joined if one is a
power of the other. So the graph is naturally a directed graph,
with an arc g→ h if h is a power of g. It is easily seen that this
relation is transitive.

Hence, if we have an induced P4 in a cograph, directions must
alternate:

a→ b← c→ d.

Now in a p-group, if c→ b and c→ d, then b and d lie in a
cyclic group of prime power order, so one is a power of the
other. Hence there can be no induced P4:

Theorem
The power graph of a group of prime power order is a cograph.
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The power graph of an EPPO group is a cograph

This follows easily from the previous result. Hence the
following problem is a generalisation of the problem of
determining EPPO groups:

Problem
Determine the finite groups whose power graph is a cograph.
I have worked on this problem with Pallabi Manna and Ranjit
Mehatari from Rourkela. Our first theorem states:

Theorem
If G is a nilpotent group, then the power graph of G is a cograph if
and only if either G has prime power order, or G = Cpq where p and q
are primes.

Recall that a nilpotent EPPO group has prime power order. The
addition of the groups Cpq has a big effect on the class of
groups!
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Simple groups whose power graph is a cograph

Using this result, it is possible to show the following.

Theorem
Let G be a finite simple group whose power graph is a cograph. Then
one of the following holds:

I G = PSL(2, q) for a prime power q, where each of
(q + 1)/ gcd(q + 1, 2) and (q− 1)/ gcd(q− 1, 2) is either a
prime power or the product of two primes;

I G = Sz(q) for q an odd power of 2, where each of q− 1,
q +

√
2q + 1 and q−

√
2q + 1 is either a prime power or the

product of two primes;
I G = PSL(3, 4).

Note that PSL(2, 11) and M11 have identical GK graphs, but the
power graph of the first is a cograph, that of the second is not.
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A problem for number theorists

Problem
Are there infinitely many values of q for which Pow(PSL(2, q)) is a
cograph?

For example, the values of d up to 200 for which the power
graph of PSL(2, 2d) is a cograph are 1, 2, 3, 4, 5, 7, 11, 13, 17, 19,
23, 31, 61, 101, 127, 167, 199.
Similar (possibly easier) question for Sz(q).
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More graphs

I will finish with a couple of recent results, not specifically
about EPPO groups, but about the question: given two graphs
on a group, for which groups do they coincide? We will see that
other interesting classes of groups arise.

The commuting graph of a group G has vertex set G, with an
edge from x to y whenever xy = yx. This is the oldest of these
graphs, appearing implicitly in the seminal 1955 paper of
Brauer and Fowler.
Clearly the commuting graph contains the enhanced power
graph as a subgraph. When are they equal?
We saw that the enhanced power graph is equal to the power
graph if and only if G contains no Cp × Cq where p and q are
distinct primes. Similarly, the commuting graph equals the
enhanced power graph if and only if G contains no Cp × Cp,
where p is prime.
From this, the groups can be determined.
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Let G be a group containing no Cp × Cp. By a theorem of
Burnside, all Sylow subgroups of G are cyclic or generalized
quaternion.

If they are all cyclic, then G is metacyclic and its structure is
clear.
If the Sylow 2-subgroups are generalized quaternion, then
I by the Brauer–Suzuki theorem, H = G/O(G) has a unique

subgroup Z of order 2, where O(G) is the largest normal
subgroup of odd order;

I H/Z has dihedral Sylow 2-subgroups, so is determined by
the Gorenstein–Walter theorem;

I a cohomological argument due to Glauberman shows that
any such group H/Z has a unique cover H with unique
subgroup of order 2;

I using the fact that the other Sylow subgroups are cyclic, it
is possible to determine G.
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Super graphs

Following work by several authors, G. Arunkumar, Rajat Kanti
Nath, Lavanya Selvaganesh and I defined, for each type of
graph on a group G, a conjugacy supergraph, in which g and h
are joined if and only if there are conjugates of g and h which
are joined in the original graph.

The idea can be extended to other equivalence relations on the
group, such as “same orbit of the automorphism group”, or
“same order”.
Here are two theorems from our paper in preparation.
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Two theorems

Theorem
For a finite group G, the following are equivalent:

I the conjugacy supercommuting graph is equal to the commuting
graph;

I every centralizer is a normal subgroup;
I G is a 2-Engel group, that is, satisfies the identity [y, x, x] = 1.

Theorem
For a finite group G, the following are equivalent:
I the conjugacy superpower graph is equal to the power graph;
I the conjugacy superenhanced power graph is equal to the

enhanced power graph;
I G is a Dedekind group, that is, every subgroup is normal.
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The independence graph

I would like to finish with some connections between the
power graph and enhanced power graph and some other
graphs introduced by Andrea Lucchini, related to the
generating graph.

The generating graph of a group G has an edge from g to h
whenever 〈g, h〉 = G. It has been the subject of much research.
Unfortunately, if G is not 2-generated, then the generating
graph is null. To overcome this defect, Lucchini defined the
independence graph of G, in which g and h are joined if and
only if {g, h} is contained in a minimal (with respect to
inclusion) generating set for G.
Note that, if h is a power of g, then {g, h} is not contained in
any minimal generating set. In a paper in preparation, Lucchini
and Nemmi say that G has the independence property if the
converse holds, that is, the independence graph is the
complement of the power graph.
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Lucchini and Nemmi determined the soluble groups with the
independence property. They also showed that there are no
non-soluble groups, using the following very recent theorem of
Saul Freedman:

Theorem
Let S be a non-abelian finite simple group. Then there exist
non-commuting elements s, x ∈ S such that, whenever G is an almost
simple group with socle S, andMG(s) denotes the set of maximal
subgroups of G containing s, then

x ∈
⋂

M∈MG(s)

M.
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Another variation is to define the rank graph to have an edge
{g, h} whenever {g, h} is contained in a generating set of
minimal cardinality for G, this minimal cardinality being the
rank of G. If the rank is 2, this is just the generating graph.

Just as edges of the power graph cannot be joined in the
independence graph, so edges of the enhanced power graph
cannot be joined in the rank graph. So, as above, we call G rank
perfect if the rank graph is the complement of the enhanced
power graph.
Lucchini has shown that a rank perfect group must be
supersoluble, and classified the non-nilpotent groups with this
property.
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