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How it began

Some years ago, somebody asked me a question about this
topic, which I was able to answer.

I thought no more about it until, just before the pandemic
began, someone else asked me another question.
Suddenly I found myself with lots of time to sit on the sofa and
think about mathematics, and this question became quite
obsessive.
I decided that, to cure the obsession, the best thing to do was
just to open a file and throw in all my thoughts, which I did.
The file grew quite long, until eventually I closed it and put it
on the arXiv. (At my age I have no need to struggle to get yet
another paper published in a “good” journal.)
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As a result, two things happened:

I Alireza Abdollahi, from Isfahan in Iran, saw it and invited
me to submit it to the journal of which he is editor-in-chief,
the International Journal of Group Theory. As this is a
diamond open access journal, I was happy to agree. The
paper has now appeared.

I Ambat Vijayakumar, from Kochi in Kerala, India, saw it
and decided to run an on-line discussion group on the
topic, and invited me to help lead the discussion, which I
was happy to do. The discussion group ran from March
until October 2021 and was attended regularly by
mathematicians from all over India and further afield.

The aftermath of the discussion group is that suddenly I have a
large number of collaborations with Indian co-authors, and
almost every day’s mail brings a new manuscript for my
perusal.
I am going to tell you about some of this material.
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Groups and graphs

Graphs and groups represent very contrasting parts of the
mathematical universe. Groups measure symmetry; they are
highly structured, elegant objects. Graphs, on the other hand,
are “wild”: we can put in edges however we please. Some
graphs are beautiful, but most are scruffy.

Nevertheless, they have a lot to say to one another.
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The commuting graph

I am not talking about Cayley graphs, though these are perhaps
the best-known type of graphs on groups.

My graphs are exemplified by the commuting graph of a
group, whose vertices are the group elements, two vertices x, y
joined if xy = yx.
This graph was introduced by Brauer and Fowler in their
seminal 1955 paper, where they showed that there are only
finitely many finite simple groups of even order with a
prescribed involution centraliser; this could be said to be the
first step towards the classification of the finite simple groups.
In fact Brauer and Fowler don’t use the word “graph” in the
paper; but their main tool is the graph distance in the induced
subgraph on the non-identity elements, and the main use they
make of it is to show that the diameter of this graph is
surprisingly small.
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A hierarchy

In order to make comparisons, we introduce several more
graphs. In each case, I give the rule for joining x and y.

I The power graph: one of x and y is a power of the other.
I The enhanced power graph: Both x and y are powers of an

element z (equivalently, 〈x, y〉 is cyclic).
I The commuting graph, already defined (equivalently,
〈x, y〉 is abelian).

I The non-generating graph: 〈x, y〉 6= G.
Each is contained in the next, except for the last two: the
commuting graph is contained in the non-generating graph if
and only if G is nonabelian.
It is clear that, above the commuting graph, we could put other
graphs defined by properties imposed on 〈x, y〉: for example,
nilpotence and solubility.
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When are consecutive terms equal?

When we have a hierarchy it is natural to ask when two terms
can be equal. For the last pair it is easy:

Proposition

Let G be a non-abelian group. Then the non-generating graph is equal
to the commuting graph if and only if G is a minimal non-abelian
group.
For if G is minimal non-abelian then any two elements which
don’t generate G must commute; conversely if this is true then
all proper subgroups are abelian and G is minimal non-abelian.
The classification of minimal non-abelian groups was given by
Miller and Moreno in 1904.
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Proposition

I The enhanced power graph of G is equal to the commuting graph
if and only if G contains no subgroup Cp × Cp with p prime.

I The power graph of G is equal to the enhanced power graph if
and only if G contains no subgroup Cp × Cq with p, q distinct
primes.

In the first case, a theorem of Burnside shows that all Sylow
subgroups of G are cyclic or generalized quaternion, and so G
is determined by theorems from the “golden age” of group
theory (Gorenstein–Walter and Glauberman).
The other case is more interesting.
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The Gruenberg–Kegel graph

The Gruenberg–Kegel graph of a finite group G is the graph
whose vertices are the prime divisors of G, two vertices p and q
joined if G contains an element of order pq.

Theorem
For the finite group G, the following conditions are equivalent:
I the power graph of G is equal to the enhanced power graph;
I the Gruenberg–Kegel graph of G has no edges;
I every element of G has prime power order.

Groups satisfying the last condition are known as EPPO
groups. They were first studied by Higman (who classified the
soluble ones) in the 1950s. In the early 1960s, in the course of
discovering his infinite family of simple groups, Suzuki found
all the simple ones. The complete classification was given by
Brandl in 1981, published in a rather obscure journal, which led
to its rediscovery by several authors subsequently.
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Differences

If two of these graphs are unequal, what can we say about their
difference, the graph whose edges are those of the larger graph
not in the smaller?

The difference of the non-generating and commuting graphs
was studied by Saul Freedman in his PhD thesis; he
concentrated mainly on questions of connectedness and
diameter.
Recently, with Sucharita Biswas, Angsuman Das and Hiranya
Kishore Dey, I have been looking at the difference of the
enhanced power graph and the power graph. This is a
relatively sparse graph, so when it is connected it is likely to
have good properties as a network.
We don’t have definitive results, but I will give a couple of
examples. First, some remarks about useful tools.
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Twin reduction

The first thing we do is to remove all the isolated vertices.

Two vertices of a graph are called twins if they have the same
neighbours (possibly excepting one another). This is an
equivalence relation on a graph, and we lose little information
if we identify twins, and continue until no twins remain. The
resulting graph is, up to isomorphism, independent of the
reduction process.
Many interesting classes of graphs, including perfect graphs,
cographs, and chordal graphs, are determined by forbidden
induced subgraphs. If the graphs in a class F contain no twin
vertices, then a graph Γ is F -free if and only if the result of twin
reduction of Γ is F -free.
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Two examples

Example: The Mathieu group M11.
In this case, removal of isolated vertices and twin reduction
brings the number of vertices down from 7920 to 385. The
resulting graph is bipartite, with bipartite sets of sizes 165 and
220, and the vertices in the two sets have valencies 4 and 3
respectively. The graph has diameter 10 and girth 10; the girth
is rather large for a graph if this size. The automorphism group
of the graph is just M11.

Example: The group PSL(3, 3). In this case, to our surprise, we
came up with a very natural graph which has not been studied,
as far as we are aware. The vertices are the ordered pairs (P, L),
where P is a point and L a line of the projective plane of order 3
(so 169 vertices). The pairs fall into two types, flags (P incident
with L) and antiflags (P not indident with L). The graph is
bipartite: each edge joins a flag to an antiflag. Again the graph
has relatively large girth, and its automorphism group is
Aut(PSL(3, 3).
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The rule for adjacency is that a flag (P, L) is joined to an antiflag
(Q, M) if P is incident with M and Q with L.
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Monotone graph parameters

We feel that the power graph and enhanced graph are “not
very different”. One way to substantiate this would be to take a
monotone graph parameter (one which doesn’t decreases when
edges are added to the graph) and compare its values on the
two graphs.

Here is an example I found with V. V. Swathi and M. S. Sunitha.
The matching number of a graph is the maximum number of
pairwise disjoint edges it contains. This parameter is clearly
monotone.

Theorem
For any finite group G, the matching numbers of the power graph and
the enhancded power graph of G are equal.
For the proof, we have to take a maximum-size matching in the
enhanced power graph, carefully chosen, and for each edge not
in the power graph, replace it by an edge in the power graph
(with suitable readjustments elsewhere).
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Extending the hierarchy into two dimensions

With G. Arunkumar, Rajat Kanti Nath and Lavanya
Selvaganesh, I found a way of extending the hierarchy into a
second dimension.

Let A be one of the graph types in the hierarchy, and B an
equivalence relation defined on groups. We define the B
superA graph of G to have vertex set G; vertices x and y are
joined if there are elements x′ and y′, B-equivalent to x and y
respectively, such that x′ and y′ are joined in the A-graph.
Now fixing A and coarsening the equivalence relation B also
gives us a graph with more edges.
Typical equivalence relations we consider are equality (which
just gives us the A graphs), conjugacy, and same order.
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When are two of these equal?
A Dedekind group is a group all of whose subgroups are
normal. These groups were classified by Dedekind: they are
abelian groups and groups of the form Q×A× B where Q is
the quaternion group of order 8, A an elementary abelian
2-group, and B an abelian group of odd order.

A 2-Engel group is a group satisfying the identity [x, y, y] = 1.
A group is 2-Engel if and only if all centralisers are normal
subgroups. 2-Engel groups lie between nilpotent groups of
classes 2 and 3.

Theorem
I For any finite group G, the order superenhanced power graph of

G is equal to the order supercommuting graph of G.
I The conjugacy supercommuting graph of G is equal to the

commuting graph if and only if G is a 2-Engel group.
I The conjugacy superpower graph of G is equal to the power

graph if and only if G is a Dedekind group.
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Conjugacy class graphs

In a B superA graph, B-equivalent elements are twins; so it is
natural to compress these graphs by shrinking each class of B to
a single vertex.

For example, the commuting conjugacy class graph of G has
vertex set the set of conjugacy classes in G, two classes C and D
being adjacent if there exist x ∈ C and y in D such that x and y
commute (that is, 〈x, y〉 is abelian).
The nilpotent conjugacy class graph and the soluble conjugacy
class graph are defined analogously.
Using the soluble conjugacy class graph, Parthajit Bhowal,
Rajat Kanti Nath, Benjamin Sambale and I were able to give a
strengthening of a theorem of Landau from 1903.
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Landau’s theorem

Landau proved:

Theorem
Given a natural number k, there are only finitely many finite groups
which have k conjugacy classes.
The proof is not hard. By the Orbit-Stabiliser Theorem, if a
representative of the ith class has centraliser of order ni, then
the class size is |G|/ni. These numbers sum to G, so we have

k

∑
i=1

1
ni

= 1.

This equation has only finitely many solutions.

This theorem has been studied and quantified. In particular,
there is a lower bound for the number of conjugacy classes in a
group of order n; the best result to date is c log n/(log log n)3+ε,
and it is conjectured that the correct value is c log n/ log log n.
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Our theorem

Our theorem goes in a different direction. The clique number of
a graph is the size of the largest complete subgraph. Landau’s
theorem says that there are only finitely many groups whose
soluble conjugacy class graph has a given number of vertices.
We can prove:

Theorem
Given a positive integer k, there are only finitely many finite groups
whose soluble conjugacy class graph has clique number k.
Unlike Landau’s theorem, we need the Classification of Finite
Simple Groups, and we have no decent bound for the group
order in terms of k.
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More on clique number
The clique number parameter is interesting for other types of
graph too.

If a set of elements of a group has the property that any two
generate a cyclic group, then the whole set is contained in a
cyclic group. This means that any clique in the enhanced power
graph of a group G is contained in a cyclic subgroup of G, and
hence:

Proposition

The clique number of the power graph of G is the maximum order of
an element of G.
Since the power graph is contained in the enhanced power
graph, we see that any clique in the power graph is contained
in a cyclic subgroup, so:

Proposition

The clique number of the enhanced power graph of G is equal to the
largest clique number of any cyclic subgroup of G.
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For cyclic groups

I looked at this with Ajay Kumar, Lavanya Selvaganesh and T.
Tamizh Chelvam.

Define the number-theoretic function f (n) to be the clique
number of the cyclic group of order n.
Since the generators of Cn form a clique in the power graph, we
see that f (n) ≥ φ(n), where φ is Euler’s totient function.
Since φ(n) ≥ e−γn/ log log n, we conclude that the clique
number of the enhanced power graph is only a little greater
than the clique nunber of the power graph: more evidence that,
for any group, these graphs are not very different.
But we can say more . . .
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Theorem
I f (1) = 1, and f (n) = φ(n) + f (n/p) for n > 1, where p is the

smallest prime divisor of n.
I There is a constant c = 2.6481017597 . . . with the property that

f (n)/φ(n) ≤ c.

The limit superior of the ration f (n)/φ(n) is given by the
formula

c = ∑
i≥0

i

∏
j=1

1
pj − 1

.

This sum converges very rapidly so it is easy to find good
approximations for c. But is it algebraic or transcendental?



Summary

So this has been an exciting time for me. In the last two years I
have twelve papers on this topic published or in press, and
nearly as many more in preparation, with a wide range of
coauthors, mostly from India but also from the UK, Germany,
Iran, Vietnam and Australia.

A final note for semigroup theorists: these graphs have not
been much studied for semigroups, though (for example) the
power graph was first defined for these. For sure there are
interesting things to find!
So there is far more to tell, but this is not the time to tell it . . .

. . . for your attention.
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