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Exploration

I don’t have much in the way of new theorems to report. I have
been looking at graphs defined on groups, in the hope that
some may contain “interesting” graphs (such as incidence
graphs of “interesting” geometries) within them.

It turns out that these interesting structures, if they exist, are
buried quite deep; sometimes we finish the excavation and find
only rubbish. But sometimes among the rubbish we find a
precious jewel.
I hope you enjoy hearing about the search.
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Graphs on groups

I am talking about graphs defined on groups, whose adjacency
rule reflects the group structure in some way. I am not talking
about Cayley graphs.

The original and most famous of these is the commuting graph
of a group G, whose vertices are the non-central elements of the
group, two vertices x and y joined if xy = yx. This was
introduced by Brauer and Fowler in 1955, and their results on
its diameter (for a non-abelian simple group G) led to a bound
on |G| in terms of the order of an involution centraliser,
arguably the first step towards the Classification of Finite
Simple Groups.
Another famous graph is the generating graph, in which x and
y are joined if 〈x, y〉 = G. It was introduced by Liebeck and
Shalev and has been important in studying probabilistic
statements about generating finite simple groups. (Any such
group can be generated by two elements.)
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Graphs on groups

This is a topic I hadn’t thought about for many years. I
returned to it as a result of a question.

This happened about the time the pandemic started, and gave
me a lifeline. In fact, it became quite an obsession.
To try to rid myself of the obsession, I wrote down everything I
was thinking about in a 50-page survey paper, and put it on the
arXiv.
As a result, two things happened. Alireza Abdollahi, the
editor-in-chief of the International Journal of Group Theory, a
diamond open access journal, suggested that I might submit it
to his journal. I hadn’t intended to publish it, but I was happy
to agree to his request.
Then Ambat Vijayakumar from Kerala, in south India, invited
me to help run an on-line discussion on “Graphs and groups”.
This ran for six months, and resulted in a huge amount of new
mathematics, which is still being produced. What I am talking
about here is a very small part of the whole.
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The power graph

There are many graphs defined on groups. For simplicity I will
always begin with the vertex set being the whole group, and
delete uninteresting vertices (isolated or dominating) later.

The power graph has an edge from x to y if one of x and y is a
power of the other. It was initially a directed graph (with an arc
x→ y if y is a power of x) but now is usually treated as an
undirected graph.
I will use it here because it sits at the bottom of a hierarchy of
graphs, and so tends to be relatively sparse for interesting
groups.
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Twins

When we come to studying these graphs as graphs, we notice
that they have many pairs of twin vertices, suggesting that they
can be reduced to smaller graphs.

Two vertices are open twins if they are nonadjacent and have
the same open neighbourhoods; they are closed twins if they
are adjacent and have the same closed neighbourhoods.
For example, in the power graph, elements generating the same
cyclic subgroup are closed twins.
If v and w are twins, then the permutation interchanging them
and fixing the other vertices is an automorphism. So graphs
with many twins have huge automorphism groups, mostly
uninteresting rubbish.
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Twin reduction and the cokernel

Twin reduction is the process of repeatedly identifying pairs of
twin vertices.

Theorem
If we take a graph Γ and perform twin reduction until no pairs of
twins remain, then the resulting graph is (up to isomorphism)
independent of the order in which the reductions were performed.

I will call the resulting graph the cokernel of Γ.
If necessary I will silently delete isolated or dominating vertices
(there can be at most one of these in the cokernel).
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Cographs

A cograph (also known as complement-reducible graph, N-free
graph, etc.), is a graph containing no induced 4-vertex path P4
as induced subgraph.

Cographs form the class of graphs which can be built from the
1-vertex graph by the operations of complementation and
disjoint union; it is the smallest class closed under these
operations.

Theorem
A graph Γ is a cograph if and only if its cokernel is the 1-vertex graph.
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What happens for simple groups?

Pallabi Manna, Ranjit Mehatari and I proved the following
theorem.

Theorem
The power graph of a non-abelian finite simple group G is a cograph if
and only if one of the following holds:
I G = PSL(2, q) with q a power of 2, such that each of q− 1 and

q + 1 is a prime power or a product of two primes;
I G = PSL(2, q) with q an odd prime power, such that each of

(q− 1)/2 and (q + 1)/2 is a prime power or a product of two
primes;

I G = Sz(q), where each of q− 1, q−
√

2q + 1 and q +
√

2q + 1
is a prime power or the product of two primes;

I G = PSL(3, 4).

In the first three cases, deciding which values of q occur seems
to be a problem beyond the current reach of number theory!
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What if the power graph is not a cograph?
We are looking for interesting graphs (e.g. incidence graphs of
interesting geometries) among power graphs. I am going to
restrict the search here to simple groups.

Clearly, if the power graph is a cograph, we get nothing
interesting.
There is a second class of simple groups, for which the answer
is only slightly more interesting. These are groups for which
the cokernel of the power graph (with an isolated vertex
removed if necessary) consists of many small components, all
isomorphic.
Examples include:
I G = A7: 35 components, each consisting of a tree with a

trivalent centre and three arms of length 3.
I G = PSL(2, 23): 253 components, each one K5 − P4.
I G = PSL(2, 25): 325 components, each one K5 − P4.

I do not know why the components in the second and third
case are the same.
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More interesting cases

However, there are several groups for which the cokernel of the
power graph (minus isolated vertex) is more interesting. Here
are three groups for which the graph is connected, together
with the number of vertices, diameter and girth of the resulting
graphs.

I G = PSL(3, 3): 754 vertices, diameter 11, girth 12.
I G = PSU(3, 3): 784 vertices, diameter 10, girth 3.
I G = M11: 1210 vertices, diameter 20, girth 20.

In each of these three cases, the automorphism group of the
graph is equal to the automorphism group of the group.



More interesting cases

However, there are several groups for which the cokernel of the
power graph (minus isolated vertex) is more interesting. Here
are three groups for which the graph is connected, together
with the number of vertices, diameter and girth of the resulting
graphs.
I G = PSL(3, 3): 754 vertices, diameter 11, girth 12.

I G = PSU(3, 3): 784 vertices, diameter 10, girth 3.
I G = M11: 1210 vertices, diameter 20, girth 20.

In each of these three cases, the automorphism group of the
graph is equal to the automorphism group of the group.



More interesting cases

However, there are several groups for which the cokernel of the
power graph (minus isolated vertex) is more interesting. Here
are three groups for which the graph is connected, together
with the number of vertices, diameter and girth of the resulting
graphs.
I G = PSL(3, 3): 754 vertices, diameter 11, girth 12.
I G = PSU(3, 3): 784 vertices, diameter 10, girth 3.

I G = M11: 1210 vertices, diameter 20, girth 20.
In each of these three cases, the automorphism group of the
graph is equal to the automorphism group of the group.



More interesting cases

However, there are several groups for which the cokernel of the
power graph (minus isolated vertex) is more interesting. Here
are three groups for which the graph is connected, together
with the number of vertices, diameter and girth of the resulting
graphs.
I G = PSL(3, 3): 754 vertices, diameter 11, girth 12.
I G = PSU(3, 3): 784 vertices, diameter 10, girth 3.
I G = M11: 1210 vertices, diameter 20, girth 20.

In each of these three cases, the automorphism group of the
graph is equal to the automorphism group of the group.



More interesting cases

However, there are several groups for which the cokernel of the
power graph (minus isolated vertex) is more interesting. Here
are three groups for which the graph is connected, together
with the number of vertices, diameter and girth of the resulting
graphs.
I G = PSL(3, 3): 754 vertices, diameter 11, girth 12.
I G = PSU(3, 3): 784 vertices, diameter 10, girth 3.
I G = M11: 1210 vertices, diameter 20, girth 20.

In each of these three cases, the automorphism group of the
graph is equal to the automorphism group of the group.



The case G = M11

In this case, the 1210 vertices fall into orbits of lengths 165
(twice), 220 and 660 under the action of M11. The graph looks
like this:

��
��

��
��

��
��

��
��

165

165

660

220

1

1

4 1

1

3

p p p p p p p p p p

From this we can build a bipartite graph on 165 + 220 vertices,
where the vertices in the two parts have valencies 4 and 3
respectively.
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This graph has diameter and girth 10.

Since it is bipartite, it is presumably the incidence graph of a
nice geometry with 165 points and 220 lines, having
automorphism group M11. Two points lie on at most one line,
and there are no triangles or quadrilaterals. I am not sure
whether this geometry is already known, or what other
properties it may have.
I suspect that similar beautiful objects can be extracted from
other finite simple groups in a similar way.
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Some speculations

Question
For which finite simple groups is the cokernel of the power graph (less
isolated vertex) connected? In particular, is this the case for most
groups of Lie type with rank greater than 1, and for most sporadic
groups?

Question
If this graph is connected, is it the case that its automorphism group
is the same of that of the group?

Question
Find general results about the numbers of vertices, diameter, girth,
and other parameters for the graphs in the case where they are
connected.

Question
What happens for other graphs defined on groups?
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. . . for your attention.


