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Two questions

I want to begin with two questions.

I Which graphs make the best networks?
I How can we tell whether two graphs are the same?

My main interest here is in the second question, but you will
see that the two questions are more closely related than you
might first think.
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What makes a good network?
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Suppose you wanted to build a network connecting ten nodes.
You could afford to construct fifteen edges. You want the
network to be well connected and resilient. Which one of the
two shown above would you choose?



What makes a good network?

�
�
�
�
�
��
Z

Z
Z
Z

ZZ�
�

�
�
��
B
B
B
B
B
BB�
��

S
SS

���
PPP

Z
Z

Z
ZZ

�
�
�
��

B
B
B
B
B

�
�
�
�
�

t t

t
t

t
t t

t tt

t t
t t

t t
t t

t
t

�
�
��

�
�
��

@
@

@@

@
@

@@

�
�

�
�

@
@

@
@

Suppose you wanted to build a network connecting ten nodes.
You could afford to construct fifteen edges. You want the
network to be well connected and resilient. Which one of the
two shown above would you choose?



I think everyone would agree to choose the first graph. No two
nodes are more than two steps apart, whereas the maximum
distance in the second is 5.

Moreover, the second network has an obvious bottleneck, the
edge in the middle; if this fails, the network will fall apart into
two parts of size 5. We would need five edges to fail in order to
disconnect the first network into two equal parts.
The first graph is the celebrated Petersen graph, and has many
nice properties including symmetry (its automorphism group
has order 120).
But what if we are faced with huge networks which cannot be
drawn in a simple way?
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When are two graphs the same?

Two graphs Γ and ∆ are isomorphic if there is a bijection from
the vertex set of Γ to the vertex set of ∆ which carries edges to
edges and non-edges to non-edges.

Are these two graphs isomorphic?
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Again it is not too difficult to see that they are: just start
matching up vertices.

However, with two large graphs, drawn in an unhelpful way, it
may not be easy to decide.
This is the famous graph isomorphism problem, one of a select
class of problems in the complexity class NP which are not
known to be either in P (polynomial-time solvable) or
NP-complete (equivalent to the hardest problems in NP).
In the last decade, László Babai found an algorithm for graph
isomorphism which runs in quasipolynomial time, that is, time
bounded by O(exp(a(log n)c) for some constants a and c. (This
is polynomial if c = 1.)
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Coherent configurations

One of the pioneers on the graph isomorphism problem was
Boris Weisfeiler, who worked on it in the former Soviet Union
in the 1960s. He emigrated to the USA in the 1970s, then in the
1980s went hiking in Chile; he disappeared, and no trace of him
has ever been found.

Weisfeiler and his colleague Leman devised an algorithm
which, given a graph, constructs a canonical refinement of it, an
object which they called a cellular algebra. If two graphs are
isomorphic, then these cellular algebras are isomorphic; since
they usually have much more structure, it is simpler in practice
to test this.
Weisfeiler’s ideas are deeply embedded in Babai’s proof.
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Coherent configurations

The cellular algebras of the Weisfeiler–Leman algorithm are
now called coherent configurations.

In the 1960s, as well as Weisfeiler and colleagues, two other
schools came up with similar ideas:
I In group theory, Wielandt extended the method of Schur

rings invented by Schur. This was refined by Donald
Higman under the name coherent configurations.

I A special case was introduced by Bose and his students in
statistics, under the name association schemes.
Statisticians need to invert large symmetric matrices;
before the days of computers, this was much easier if the
matrices were patterned in a certain way.

Now the term “cellular algebra” has been used in a different
context, so these objects are now called “coherent
configurations”.
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The definition

A coherent configuration is a collection of binary relations
R1, . . . , Rr on a set Ω satifying certain properties, which follow.
Associating a colour with each relation, we can think of this as
an edge-coloouring of the complete directed graph with loops
on Ω.

I Every ordered pair satisfies exactly one of the relations.
I The relation of equality (the diagonal of Ω×Ω) is the

union of some of these relations.
I The transpose {(y, x) : (x, y) ∈ Ri} of any relation is

another relation in the set.
I Given i, j, k ∈ {1, . . . , r} and (x, y) ∈ Ri, the number of

z ∈ Ω such that (x, z) ∈ Rj and (z, y) ∈ Rk depends only on
(i, j, k) and not on the choice of x and y.

The number r is called the rank of the configuration. If all the
relations Ri are symmetric, the configuration is an association
scheme.
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The Weisfeiler–Leman algorithm

The set of coherent configurations on Ω is closed under join of
partitions, and contains the partition into singletons. So, given
any partition Π of Ω2, there is a unique coarsest coherent
configuration which refines Π. The WL algorithm finds this
configuration. It works as follows.

Given Π = {R1, . . . , Rs}, regard it as a collection of
edge-coloured digraphs on Ω (one for each relation). Now, for
each triple (i, j, k), and each choice of (x, y) ∈ Ri, count the
number of z for which (x, z) ∈ Rj and (z, y) ∈ Rk. In general
these numbers will not be constant. So refine the partition by
splitting Ri into a number of parts, so that these numbers are
constant on each part.
Then iterate this construction. It stabilises after finitely many
steps, and the stable partition is clearly a coherent
configuration.
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Another approach

The WL algorithm is simple and efficient. However, it may take
a number of steps to reach the stable partition.

In view of this, Mikhail Klin and Michael Kagan proposed a
different refinement algorithm. Their algorithm, to which I
now turn, involves regarding the graph or edge partition as an
electrical network, and computing the effective resistance
between pairs of vertices.
This idea is also related to the question of good networks, as we
will see.
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Resistance

Given a graph on the vertex set Ω, we can regard it as an
electrical network. The simplest way to do this is to put a
1-ohm resistor on each edge of the graph. Then we can measure
the effective resistance between any two vertices by connecting
those vertices to a 1-volt battery and measuring the current I
which flows: the effective resistance is then 1/I.

The effective resistance can be calculated by using the relevant
physics:
I Kirchhoff’s voltage law: the sum of the potential

differences along any two paths joining vertices v and w is
independent of the chosen paths.

I Kirchhoff’s current law: for any vertex v apart from those
connected to the battery, the current flowing into v is equal
to the current flowing out of v.

I Ohm’s law: potential difference is equal to current times
resistance.
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Resistance is a metric

Theorem
The function d, where d(v, w) is the effective resistance between
vertices v and w, is a metric on Ω.
We call this metric the resistance distance.

The theorem remains true if we replace the 1-ohm resistors by
resistors of any given positive resistance.
Now small average resistance distance between nodes indicates
a good network. This notion is made precise in statistics by the
notion of A-optimality for a block design: an A-optimal design,
used for comparing a number of treatments, minimizes the
average variance of the estimators of treatment differences.
Thus in our two example networks, the average resistance in
the Petersen graph is 11/15; that in the other network is
206/135, more than twice as high.
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the Petersen graph is 11/15; that in the other network is
206/135, more than twice as high.



Computing resistance distance

There are several methods for computing resistance distance.

I By hand, using the physical laws, for networks which are
not too large.

I By matrix inversion. We weight each edge by its
conductance, the reciprocal of the resistance (so that
non-adjacent pairs of vertices have conductance zero).
Then form the Laplacian matrix of the weighted network,
and compute its Moore–Penrose inverse M. The effective
resistance between v and w is Mvv + Mww −Mvw −Mwv.

I With weights as before, the effective resistance between v
and w is equal to the sum of the weights of 2-component
spanning forests with v and w in different components,
divided by the sum of the weights of the spanning trees.
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Resistance distance transform

The method proposed by Kagan and Klin works as follows.

I Starting from a partition Π, assign weights to the edges in
each part of Π. (For example, if we begin with a graph,
assign 1 to the edges and 0 to the non-edges.)

I Compute the matrix of effective resistances.
I Now the new partition has two pairs in the same part if

their effective resistances are equal.
I Iterate until the partition stabilises. (Typically, at the next

stage, use as weights the conductances found in the
previous step.)

An advantage of this method is that it “sees” the whole graph
at each step, unlike the WL algorithm which only looks locally.
In many cases they found that the partition was stable after just
one step.
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Drawbacks

However, the method has some drawbacks.

While in WL each partition is guaranteed to refine the
preceding one, that is not true for RDT.
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{2, 3} is an edge; {4, 6} is a non-edge; but R23 = R46 = 1.
In this case, the partition defined by resistance distance does
not refine the original partition
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In the complementary graph Γ′, for resistance distances not
involving 4 or 6, we can replace the left-hand side by a single
edge between 1 and 2. Therefore R′12 = R′13. But R12 6= R13.
Neither of these RDT partitions refines the other.
But we would like a graph and its complement to reduce to the
same configuration since they are the same partition of Ω2.
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RDT2

In an attempt to avoid these problems, Mike Kagan proposed a
new version RDT2.

In this, starting from a partition, we associate independent
indeterminates with the parts of the partition, and the initial
matrix has these indeterminates in the corresponding positions.
Now when we compute the matrix of effective resistances, each
entry is a rational function in these indeterminates.
RDT2 resolves both the earlier problems with RDT I showed
you. I think that Mike Kagan will give more detail on this.

Conjecture

Using RDT2, the output partition of each stage refines the input
partition; hence the procedure is guaranteed to terminate.
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Another feature

The matrix of resistance distances is necessarily symmetric. So,
if the WL algorithm produces a coherent configuration whose
matrices are not all symmetric, RDT2 cannot reach this
configuration.

There is an operation of Jordan product defined on symmetric
matrices: A ∗ B = 1

2 (AB + BA). One can give axioms for this
operation, and define a Jordan algebra to be an algebra in
which these axioms hold.
Thus (and for us this is the important example) the set of real
symmetric matrices, with the operation A ∗ B = 1

2 (AB + BA), is
a Jordan algebra.
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Jordan schemes

We define a Jordan scheme to be an object satisfying similar
axioms to those of a coherent configuration, a collection of
binary relations R1, . . . , Rr on a set Ω satifying:
I Every ordered pair satisfies exactly one of the relations.

I The relation of equality (the diagonal of Ω×Ω) is the one
of these relations.

I All the relations are symmetric.
I Given i, j, k ∈ {1, . . . , r} and (x, y) ∈ Ri, the number of

z ∈ Ω such that (x, z) ∈ Rj and (z, y) ∈ Rk plus the number
such that (y, z) ∈ Rj and (z, x) ∈ Rk depends only on (i, j, k)
and not on the choice of x and y.

The span over the real numbers of the matrices of a Jordan
scheme is thus a Jordan algebra. One can define a Jordan WL
algorithm which will produce the largest Jordan scheme below
a given partition.
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Jordan schemes, 2

If we take a homogeneous coherent configuration, and
symmetrise the matrices by adding any non-symmetric matrix
and its transpose, we obtain a Jordan scheme.

A Jordan scheme is called proper if it is not obtained in this
manner.
Mikhail Muzychuk, Sven Reichard, and Mikhail Klin have
produced infinite families of examples of proper Jordan
schemes.
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Two conjectures

Conjecture

A configuration is stable under RDT2 if and only if it is a Jordan
scheme.

Conjecture

The stable configuration obtained from a given partition Π is the
same as the Jordan scheme obtained by applying the Jordan WL
algorithm to Π.
And we hope that RDT2 will stabilise in significantly fewer
steps than the Jordan WL algorithm! We also hope that new
examples of Jordan schemes can be produced in this way.
We have made some progress towards these conjectures but
they are not yet established.
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. . . for your attention.


