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My acquaintance with Carlo was all too brief.
Francesco Matucci had invited him to join our collaboration
with João Araújo on “Integrals of groups”; he made a
substantial contribution, and the four-author paper was
published in the Israel Journal of Mathematics in 2019.

In February 2020, it was arranged that Carlo, Francesco and I
would meet in Florence to work on the sequel. Circumstances
were against us: the north of Italy was already in Covid
lockdown, though Florence was still open; a storm on 9
February caused my flight to be cancelled, so I arrived a day
late; and a storm on 15 February nearly did the same for my
return flight (it was one of the bumpiest landings I have
experienced). Despite this, it was a greatly successful visit; we
proved substantial results for the second paper.
Before we could get the paper written, Carlo was no longer
with us. We felt his absence severely and were only partly
successful in understanding his notes. Nevertheless, with
Claudio Quadrelli’s help, the paper was written, and has been
accepted for publication.
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Inverse group theory
Before continuing with my main topic, I will say a few brief
words about these two papers.

The general topic was what we call “inverse group theory”.
There are many group theoretic constructions; the one we were
mainly concerned with is the derived group. We say that a
group H is an integral of G if G is the derived group of H. Can
one characterize integrable groups? We have been unable to do
so, although Bettina Eick has given a lovely characterization of
inverse Frattini groups: the finite group G is the Frattini
subgroup of some group if and only if the inner automorphism
group of G is contained in the Frattini subgroup of the
automorphism group.
You can probably think up many group-theoretic constructions
which give rise to inverse problems. Some are trivial (for
example, G is the centre of some group if and only if G is
abelian); some don’t make much sense. But the integrability
problem turns out to lie in a sweet spot where the theory is
non-trivial and interesting.
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Groups and graphs
But integrals of groups are not my topic today. Rather I will
talk about a connection between groups and graphs which
raises interesting results and problems in both areas.

Graphs and groups represent very contrasting parts of the
mathematical universe. Groups measure symmetry; they are
highly structured, elegant objects. Graphs, on the other hand,
are “wild”: we can put in edges however we please. Some
graphs are beautiful, but most are scruffy.

Nevertheless, they have a lot to say to one another.
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Brauer and Fowler

The graphs I discuss have the elements of the group as vertices,
and a joining rule given by the group structure, so that they are
preserved by all group automorphisms.

The first such graph is the commuting graph, introduced by
Brauer and Fowler in their seminal 1955 paper: two elements of
G are joined by an edge if they commute. This paper showed
that there are only finitely many finite simple groups of even
order with a prescribed involution centraliser; this could be
said to be the first step towards the classification of the finite
simple groups.
In fact Brauer and Fowler don’t use the word “graph” in the
paper; but their main tool is the graph distance in the induced
subgraph on the non-identity elements, and the main use they
make of it is to show that the diameter of this graph is
surprisingly small.
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Outline of the talk

This area is now so large that I cannot give you an overview.
Instead, I will concentrate on three particular types of graphs;
basic graphs, such as the commuting graph just defined;
conjugacy supergraphs; and graphs related to generation.

There will be many inclusions holding between edge sets of
these graphs. Asking about the class of groups for which two
of these graphs are equal turns up several interesting classes of
groups; this will be my main topic.
Since I am more interested in comparing graphs than in their
specific properties, I will assume in all cases that the vertex set
is the group G. People who investigate properties of the graphs
often vary this: for example, in studies of the commuting
graph, it is common to remove the centre of G (the set of
dominating vertices in the graph).
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Three basic graphs

I begin with three graphs for which the joining rule for
elements g and h is as follows:

I the power graph: one of g and h is a power of the other;
I the enhanced power graph: both g and h are powers of an

element k (that is, 〈g, h〉 is cyclic);
I the commuting graph: gh = hg (that is, 〈g, h〉 is abelian).

Clearly the recipe in the last two cases can be extended; we can
define the nilpotency graph (resp. solubility graph) by the
joining rule that 〈g, h〉 is nilpotent (resp. soluble).
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Equality

It is clear that the edge set of the power graph is contained in
that of the enhanced power graph, which in turn is contained
in that of the commuting graph (so these three graphs form a
hierarchy).

When does equality hold?

Theorem
I The power graph and enhanced power graph of G are equal if and

only if G contains no subgroup Cp × Cq, where p and q are
distinct primes.

I The enhanced power graph and commuting graph of G are equal
if and only if G contains no subgroup Cp × Cp, where p is prime.

These properties are straightforward to prove, and lead to
complete classifications of the relevant classes of groups, as I
will indicate.
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The Gruenberg–Kegel graph

The Gruenberg–Kegel graph (sometimes called the prime
graph) of G is the graph whose vertices are the prime divisors
of |G|, two primes p and q being joined if G contains an element
of order pq.

Gruenberg and Kegel were led to investigate these graphs from
problems about the integral group ring. In an unpublished
manuscript, they gave a description of groups whose GK graph
is disconnected; this was later published by Gruenberg’s
student Williams, and the result was refined and corrected by
various authors including Kondrat’ev and Mazurov.
The relevance for us is that a group G has power graph and
enhanced power graph equal if and only if its GK graph has no
edges; so, if G is not a p-group, then the Gruenberg–Kegel
theorem applies. Such groups, in which all elements have
prime power order, are known as EPPO groups.
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EPPO groups

EPPO groups were first investigated by Higman in the 1950s, in
the soluble case. In the 1960s, Suzuki, in the course of
discovering his infinite family of simple groups, determined all
the simple EPPO groups (only certain PSL(2, q) and Sz(q) and
the group PSL(3, 4)). A complete determination was given by
Brandl in 1981, in a paper which is somewhat inaccessible; not
surprisingly, this result has been rediscovered several times.

Note that various number-theoretic problems arise. For
example PSL(2, 2d) is an EPPO group if and only if both 2d + 1
and 2d − 1 are prime powers; this holds if and only if d = 2 or
d = 3.
A modern account is in my paper with Natalia Maslova in the
Journal of Algebra, which includes also a survey of GK graphs
and the extent to which a group is determined by its GK graph.
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Enhanced power graph and commuting graph

These two graphs are equal if and only if there are no
subgroups Cp × Cp. A theorem of Burnside shows that the
Sylow subgroups must be cyclic or (for p = 2) generalised
quaternion. Now theorems of Burnside, Gorenstein and Walter,
and Glauberman give a complete classification.

Bojan Mohar and I introduced a graph lying between the
enhanced power graph and the commuting graph, which we
called the deep commuting graph. Two elements are joined if
and only if their inverses in every central extension of G
commute. Now we have the further problems of deciding
when this graph can coincide with either of its neighbours.
This involves more complicated machinery such as the
Bogomolov multiplier of G. I will not discuss it here.
Our paper is to appear in the Journal of Graph Theory.
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Super graphs

The second class of graphs consist of super graphs, defined as
follows: we have a graph on G (typically invariant under
Aut(G)), and an equivalence relation on G (also
Aut(G)-invariant); we join g and h if there exist g′ and h′, in the
same equivalence classes as g and h, which are joined in the
graph. It would be natural to take the vertex set to be the set of
equivalence classes; but since I am comparing graphs, I will
stick with the whole group as vertex set.

I will take the graphs considered above, and the equivalence
relation of conjugacy, and define the conjugacy superpower
graph etc.
This takes our hierarchy into a second dimension, since the
conjugacy superpower graph contains the power graph (and
similarly for the others).
This gives us several more cases where we can ask about
equality; I will deal with just two. The others are open
problems.
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Graph and supergraph

Theorem
I The conjugacy supercommuting graph of G is equal to the

commuting graph if and only if G is a 2-Engel group, that is,
satisfies the identity [x, y, y] = 1.

I The conjugacy superpower graph of G is equal to the power
graph if and only if G is a Dedekind group, that is, one in which
every subgroup is normal.

Dedekind groups were determined by Dedekind; they are
either abelian, or of the form Q×A× B, where Q is the
quaternion group of order 8, A an elementary abelian 2-group,
and B an abelian group of odd order.
The class of 2-Engel groups includes the 2-nilpotent groups,
and is included in the 3-nilpotent groups (a theorem of
Hopkins and Levi, independently).
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The class of 2-Engel groups includes the 2-nilpotent groups,
and is included in the 3-nilpotent groups (a theorem of
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The generating graph and its relatives

The generating graph of a finite group G is the graph whose
vertices are the group elements, with g and h joined if
〈g, h〉 = G.

If G is non-abelian, then the edge set of the generating graph is
contained in the complement of the edge set of the commuting
graph, since commuting elements cannot generate the group.
Equality holds here if and only if G is a minimal non-abelian
group, a non-abelian group all of whose proper subgroups are
abelian. These groups were all determined by Miller and
Moreno in 1904.
All non-abelian finite simple groups are generated by two
elements, and the generating graph is an important tool for
studying these. However, if a group G cannot be generated by
two elements, then the generating graph has no edges.
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Independence and rank graphs

One possible approach would be to consider the hypergraph
whose hyperedges are the generating sets.

Andrea Lucchini proposed a different approach, which does
not involve leaving the convenient world of graphs.
The independence graph of G is the graph in which g and h are
joined if they belong to a minimal (with respect to inclusion)
generating set.
The rank graph of G is the graph in which g and h are joined if
they belong to a generating set of minimal cardinality.
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Relation to the hierarchy

A little thought shows that

I the edge set of the independence graph is contained in the
complement of the edge set of the power graph;

I the edge set of the rank graph is contained in the
complement of the edge set of the enhanced power graph.

The first statement holds because, if h = gm, and g and h are
contained in a generating set S, then S is not mimimal since we
may omit h.
The second holds because, if 〈g, h〉 = 〈k〉, then we can remove g
and h from a generating set and replace them by k.

When does equality hold?
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Independence and perfect rank properties

This question has recently been answered by Saul Freedman,
Andrea Lucchini, Daniele Nemmi, and Colva Roney-Dougal.
They say that groups in which the independence graph is the
complement of the power graph have the independence
property, while groups in which the rank graph is the
complement of the enhanced power graph have the perfect
rank property.

Theorem
All finite groups with either the independence property or the perfect
rank property are known. All these groups are soluble.
The precise description is fairly long, and I will leave it out; the
paper should be available on the arXiv soon. Perfect rank takes
only a couple of pages, but independence is much harder and
involves detailed knowledge of the finite simple groups.
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Invariable generation

A set {g1, . . . , gm} invariably generates G if, for any choice of
x1, . . . , xm ∈ G, the set {gx1

1 , . . . , gxm
m } generates G.

Using this concept, we can define invariable analogues of the
generating, independence, and rank graphs:
I the invariable generating graph: g and h are joined if they

invariably generate g;
I the invariable independence graph: g and h are joined if

they are contained in a minimal invariable generating set;
I the invariable rank graph: g and h are joined if they are

contained in an invariable generating set of minimal
cardinality.
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Three questions

Now, as before, it is easy to see that

I if G is non-abelian, the edge set of the invariable
generating graph is contained in the complement of the
edge set of the conjugacy supercommuting graph;

I the edge set of the invariable independence graph is
contained in the complement of the edge set of the
conjugacy superpower graph;

I the edge set of the invariable rank graph is contained in
the complement of the edge set of the conjugacy
superenhanced power graph.

Question
For which groups does equality hold in each of the above three
inclusions?
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The Jordan trick

I have not thought about these questions – they may be easy or
impossible! But here is a simple trick that may be useful:

Proposition

Let G be a non-abelian group, and g /∈ Z(G). Then there exists h ∈ G
such that g and h invariably don’t commute.
It is enough to find h such that no conjugate of h commutes
with g. By Jordan’s theorem, there exists a conjugacy class
disjoint from CG(g).
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