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Groups and graphs

Graphs and groups represent very contrasting parts of the
mathematical universe. Groups measure symmetry; they are
highly structured, elegant objects. Graphs, on the other hand,
are “wild”: we can put in edges however we please. Some
graphs are beautiful, but most are scruffy.

Nevertheless, they have a lot to say to one another.
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Cayley graphs and others

The term “graphs on groups” may make you think of Cayley
graphs. These are very important: finite ones form a large part
of algebraic graph theory, while infinite ones are the basis of
geometric group theory.

But my subject is a bit different.
I am interested in graphs where the vertex set is G, or
something related such as the set of conjugacy classes of G, and
the joining rule is defined by the structure of G, so that the
graph is invariant under the automorphism group of G.
The first such graph to be considered is the commuting graph:
the vertex set is G, and g and h are joined if gh = hg.
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Brauer and Fowler

The commuting graph was introduced by Brauer and Fowler in
their seminal 1955 paper: two elements of G are joined by an
edge if they commute. This paper showed that there are only
finitely many finite simple groups of even order with a
prescribed involution centraliser.

In more detail, the centraliser of an element g ∈ G is the set of
elements of G that commute with g; it is a subgroup of G,
denoted by CG(g), and is in fact the closed neighbourhood of g
in the commuting graph. An involution is an element of
order 2.
Brauer and Fowler didn’t know that a non-abelian finite simple
group necessarily contains an involution; the proof of this
conjecture of Burnside (by Feit and Thompson) was still nearly
a decade in the future when they wrote.
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Involution centralisers and CFSG

The paper of Brauer and Fowler could be regarded as the first
step in the thousand-mile journey to CFSG (the Classification of
Finite Simple Groups).

Determining all simple groups with a given involution
centraliser was one of the dominating themes in the proof of
CFSG, and a generation of research students were kept busy on
this.
As a footnote, Brauer and Fowler don’t use the word “graph”
in the paper; but their main tool is the graph distance in the
induced subgraph on the non-identity elements, and the main
use they make of it is to show that the diameter of this graph is
surprisingly small, which leads to their bound.



Involution centralisers and CFSG

The paper of Brauer and Fowler could be regarded as the first
step in the thousand-mile journey to CFSG (the Classification of
Finite Simple Groups).
Determining all simple groups with a given involution
centraliser was one of the dominating themes in the proof of
CFSG, and a generation of research students were kept busy on
this.

As a footnote, Brauer and Fowler don’t use the word “graph”
in the paper; but their main tool is the graph distance in the
induced subgraph on the non-identity elements, and the main
use they make of it is to show that the diameter of this graph is
surprisingly small, which leads to their bound.



Involution centralisers and CFSG

The paper of Brauer and Fowler could be regarded as the first
step in the thousand-mile journey to CFSG (the Classification of
Finite Simple Groups).
Determining all simple groups with a given involution
centraliser was one of the dominating themes in the proof of
CFSG, and a generation of research students were kept busy on
this.
As a footnote, Brauer and Fowler don’t use the word “graph”
in the paper; but their main tool is the graph distance in the
induced subgraph on the non-identity elements, and the main
use they make of it is to show that the diameter of this graph is
surprisingly small, which leads to their bound.



The generating graph

Another graph that appears in the story is the generating graph
of the group G: the vertex set is G, and two elements g and h are
joined if they generate G (in symbols 〈g, h〉 = G).

Of course, if G cannot be generated by two elements, then this
is not a very interesting graph. Also, if G is not cyclic, then the
identity cannot occur in any 2-element generating set, so is an
isolated vertex. For this reason, many authors remove it. To
keep things uniform (the vertex set should be G, for
comparison with other graphs), I will not do so.
The generating graph was introduced by Guralnick and
Kantor, and has been very useful in questions about
probabilistic generation of finite simple groups. (As a
consequence of CFSG, we know that all non-abelian finite
simple groups are 2-generated.
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Generating graph and spread

The spread of a graph is the largest number s such that any s
vertices have a common neighbour. Thus, “spread ≥ 1” means
no isolated vertices, while “spread ≥ 2” is stronger than
“diameter 2”, so is much stronger than spread 1. However, the
following remarkable result was proved by Burness, Guralnick
and Harper recently:

Theorem
Let Γ be the generating graph of a group G, with the identity
removed. Then the following are equivalent:
I Γ has spread ≥ 1;
I Γ has spread ≥ 2;
I every proper quotient of G is cyclic.
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Commuting graph and generating graph

There is a connection between the two graphs just introduced.

The complement of a graph Γ is the graph on the same vertex
set in which two vertices are joined if and only if they are not
joined in Γ. We say that one graph is contained in another if
they have the same vertex set but the edge set of the first is
contained in that of the second. (Graph theorists say that the
first graph is a spanning subgraph of the second.)
Now, if G is non-abelian, then the generating graph of G is
contained in the complement of the commuting graph, since G
cannot be generated by commuting elements.
Moreover, the generating graph is equal to the complement of
the commuting graph if and only if G is a minimal non-abelian
group, that is, a non-abelian group of which every proper
subgroup is abelian.
Minimal non-abelian groups were classified by Miller and
Moreno in 1904.
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What is in between?

If G is a group which is not abelian and non minimaml
non-abelian, then we can consider the non-commuting,
non-generating graph of G, in which (as the rather unwieldy
name suggests, two elements are joined if they do not commute
but do not generate the group).

This graph was investigated by Saul Freedman in his recent
PhD thesis at the University of St Andrews. He was able to
prove strong results about its connectedness and diameter
(when restricted to non-isolated vertices).
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A pause for thought

Why are we doing this (apart from the fact that it is lots of fun)?

I will give you three reasons (or excuses).
I Graphs tell us something about groups. We saw that in

the work of Brauer and Fowler. I will give you another
example shortly.

I We might find interesting graphs, potentially useful as
networks. This is a little more technical but I will give an
example in my second lecture.

I Graphs can be used to define interesting old and new
classes of groups. There are two ways in which this has
happened:
I Pick a graph type (e.g. the commuting graph), and ask: for

which groups does this belong to a particular graph class
(e.g. perfect graphs, cographs)?

I Pick two graph types, and ask for which groups they are
equal or complementary. We saw an example already, the
minimal non-abelian groups.
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Two more graph types
There are many different types of graphs defined on groups; I
will give you two more here (and another shortly).

I The power graph of G: g and h are joined if one is a power
of the other. (This would more naturally be a directed
graph, with an arc from g to h if h is a power of g; but it has
become common to regard it as an undirected graph, as I
have defined it.)

I The enhanced power graph of G, a variant where g and h
are joined if there exists an element k such that g and h are
both powers of k.

It is clear that the power graph is contained in the enhanced
power graph (as a spanning subgraph).
Also, g and h are joined in the enhanced power graph if and
only if 〈g, h〉 is a cyclic group. Noting that g and h are joined in
the commuting graph if and only if 〈g, h〉 is abelian, we see that
the enhanced power graph is a spanning subgraph of the
commuting graph.
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When does equality hold?

Theorem
I The power graph of G is equal to the enhanced power graph if

and only if G contains no subgroup isomorphic to Cp × Cq,
where p and q are distinct primes.

I The enhanced power graph of G is equal to the commuting graph
if and only if G contains no subgroup isomorphic to Cp × Cp,
where p is prime.

The proofs are not difficult. If g and h have orders p and q and
commute, they are joined in the enhanced power graph but not
in the power graph; if they both have order p and commute,
they are joined in the commuting graph but not the enhanced
power graph. The converse statements are similar.
More on this shortly.
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The Gruenberg–Kegel graph

This is a much smaller graph, introduced by Gruenberg and
Kegel in their study of the integral group ring of a finite group.

The Gruenberg–Kegel graph, or GK graph for short, of the
finite group G has vertices the prime divisors of |G|, with p and
q joined if G contains an element of order pq. (This is sometimes
called the prime graph.) It is still an intensively researched
topic.
Gruenberg and Kegel showed that the augmentation ideal of
the group ring is indecomposable if and only if the GK graph is
connected.
They also gave a structure theorem for groups with
disconnected GK graph in an unpublished manuscript. The
theorem was subsequently published by Gruenberg’s student
Williams, and later refined by other (mainly Russian)
mathematicians.
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called the prime graph.) It is still an intensively researched
topic.
Gruenberg and Kegel showed that the augmentation ideal of
the group ring is indecomposable if and only if the GK graph is
connected.

They also gave a structure theorem for groups with
disconnected GK graph in an unpublished manuscript. The
theorem was subsequently published by Gruenberg’s student
Williams, and later refined by other (mainly Russian)
mathematicians.
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EPPO groups

The finite group G is an EPPO group if every non-identity
element of G has prime power order.
This class was introduced by Graham Higman, who classified
the soluble ones, in the 1950s. Michio Suzuki in the 1960s
determined the simple EPPO groups (as a spin-off from his
construction of an infinite family of finite simple groups). A
description of all EPPO groups was published by Rolf Brandl in
1981. It was in a rather obscure journal, with the result that the
work was re-done later by several different authors. Now we
have a good understanding of these groups.

Theorem
For a finite group G, the following conditions on G are equivalent:
I G is an EPPO group;
I the GK graph of G has no edges;
I the power graph and enhanced power graph of G are equal.
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Enhanced power graph and commuting graph

What about groups for which the enhanced power graph is
equal to the commuting graph? (As we have seen, they contain
no Cp × Cp subgroups.)

An old theorem of Burnside shows that a p-group with no
Cp × Cp subgroup must be either cyclic or (if p = 2) generalised
quaternion. So all Sylow subgroups of G have this form.
If every Sylow subgroup is cyclic, then G must be metacyclic
(i.e. have a cyclic normal subgroup with cyclic quotients) with
further restrictions; this case is easily described.
If the Sylow 2-subgroups are generalized quaternion, then a
specic quotient of G has dihedral Sylow 2-subgroups, and so is
described by the Gorenstein–Walter theorem. The other cyclic
subgroups restrict the group further, so again the possible
groups can be described.
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Differences

Having determined the groups for which one of these pairs of
graphs are equal, we could ask about properties of the
difference in either case.

Rather little is known here. With Sucharita Biswas, Angsuman
Das, and Hiranya Kishore Dey, I have begun looking at the
difference between the power graph and the enhanced power
graph.
In the other case, something different happened. Bojan Kuzma
and I have defined a graph we call the deep commuting graph,
which lies between the enhanced power graph and the
commuting graph. Two elements g and h are joined in the deep
commuting graph if and only if their inverse images in any
central extension of G (that is, any group H with an
epimorphism to G whose kernel is contained in the centre of H)
commute. Its study involves new ideas: Schur multiplier,
isoclinism, Bogomolov multiplier . . . Our paper will appear
shortly in the Journal of Graph Theory.
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A related question

To what extent is a group determined by one of these graphs?
Here is an unsolved problem on this.

In a group G, commutation induces a map from
G/Z(G)×G/Z(G) to G′, where Z(G) and G′ are the centre and
derived group of G. (It is naturally a map from G×G to G′, and
changing the inputs by central elements doesn’t change the
commutator.) Two groups G1 and G2 are isoclinic if there are
isomorphisms α : G1/Z(G1)→ G2/Z(G2) and β : G′1 → G′2
which “intertwine” the commutator map.
Now it is relatively easy to show that if two groups of the same
order are isoclinic, then their commuting graphs are
isomorphic. Is the converse true? Vikramin Arvind and I
conjecture that this is so for nilpotent groups of class 2. It fails
for groups of class 3. One of the groups in this example is also
the smallest group whose deep commuting graph lies strictly
between the enhanced power graph and the commuting graph.
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Something completely different

I will finish with an example supporting my claim that graphs
can help us study groups.

In 1903, Landau proved:

Theorem
Given a positive integer k, there are only finitely many finite groups
with just k conjugacy classes.
Since every talk should contain a proof, I will show you the
proof of this.
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Proof

Proof.
Let x1, . . . , xk be conjugacy class representatives. Then by the
Orbit–Stabiliser Theorem, |xG

i | = |G|/|CG(xi)|. These class sizes
sum to |G|; so, if ni = |CG(xi)|, we have

k

∑
i=1

1
ni

= 1.

This equation has only finitely many solutions [Exercise!], and
in any solution (n1, . . . , nk), the largest ni is |CG(1)| = |G|.



Quantification

Landau’s result implies that the minimum number f (n) of
conjugacy classes in a group of order n tends to infinity as
n→ ∞. How fast?

Erdős and Turán showed that f (n) ≥ log log n (logarithms to
base 2). This was improved by Laci Pyber to ε log n/(log log n)8

by Laci Pyber; the exponent 8 was reduced to 7 by Thomas
Keller, and to 3 + ε by Barbara Baumeister, Attila Maróti and
Hung Tong-Viet. It is conjectured that a bound of the form
f (n) ≥ C log n holds for some constant C. In the other direction,
f (n) ≤ (log n)3.
I will show you a different kind of extension.
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The SCC graph of a finite group

The soluble conjugacy class graph (for short, the SCC-graph) of
G is the graph whose vertex set is the set of conjugacy classes in
G, with an edge from xG to yG if and only if there exist x′ ∈ xG

and y′ ∈ yG such that 〈x′, y′〉 is a soluble group.

There are numerous variants of the definition: we could replace
“soluble” by “nilpotent”, “abelian”, “cyclic”, etc.; and there are
other variants possible too.
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A theorem

So Landau bounded the order of a finite group in terms of the
number of vertices of the SCC graph. We (that is, Parthajit
Bhowal, Rajat Kanti Nath, Benjamin Sambale and I) can bound
it in terms of the clique number of this graph (the size of the
largest complete subgraph):

Theorem
Given a natural number k, there are only finitely many finite groups
whose SCC graph has clique number k.
The Theorem has further consequences: for example, given g,
there are only finitely many finite groups whose SCC graph has
genus g.
The proof requires the Classification of Finite Simple Groups,
but only in a rather “light-touch” way.
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Some history

You will have noticed that most of my coauthors are Indian. Let
me explain why.

Last year, during the lockdown, I kept myself sane by thinking
about this stuff; I wrote a long survey paper about it and put it
on the arXiv.
Ambat Vijayakumar and Aparna Lakshmanan, from Kochi in
Kerala, south India, saw it and decided to set up a research
discussion on graphs and groups, which ran for five months
and stimulated a lot of new research, including some of the
results reported here; so the survey is now out of date!

Please join me in exploring further this fascinating topic!
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. . . for your attention.


