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More graphs

In this lecture I will try to give a more detailed picture of the
graphs we are looking at, and how they fit into the picture.

We have seen a hierarchy which begins like this (I give the rules
for g ∼ h):
I the power graph: one of g, his a power of the other;
I the enhanced power graph: 〈g, h〉 is cyclic;
I the deep commuting graph: the inverse images of g and h

commute in every central extension of G;
I the commuting graph: gh = hg, that is, 〈g, h〉 is abelian.

The deep commuting graph is an outlier: the others all have the
property that the induced subgraph on a subgroup H is the
corresponding graph for H.
We can continue the hierarchy upwards:
I the nilpotency graph: 〈g, h〉 nilpotent;
I the solubility graph: 〈g, h〉 soluble.
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What’s coming up?

I hope to talk about the following three topics:

I further results on when two of the graphs are equal or
complementary;

I twins, twin reduction, cographs, and finding interesting
graphs inside the power graph;

I results on clique number and chromatic number, and a
new constant.
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Conjugacy class graphs

Here is a variant we have already met. For each of the above
types, there is a corresponding conjugacy class graph, whose
vertices are the conjugacy classes in G, two vertices C, D joined
if there exist g ∈ C and h ∈ D such that g and h are joined in the
original graph.

There is also an expanded version of a conjugacy class graph:
the vertex set is G; two elements g and h are joined if their
conjugacy classes are joined in the conjugacy class graph.
For brevity I will call the expanded X conjugacy class graph the
“super X graph” of the group G. The super X graph contains
the X graph as an induced subgraph.
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Comparing super and regular graphs

The following theorem is taken from a forthcoming paper with
G. Arunkumar, Rajat Kanti Nath and Lavanya Selvaganesh:

Theorem
Let G be a finite group.
I The supercommuting graph of G is equal to the commuting

graph if and only if G is a 2-Engel group, that is, satisfies the
identity [x, y, y] = 1.

I The superpower graph of G is equal to the power graph if and
only if G is a Dedekind group, that is, all subgroups are normal.

I didn’t know before doing this work that a group G is 2-Engel
if and only if every centraliser is normal in G.
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Generating graph and variants

I already discussed the generating graph of a group G, and the
fact that it is contained in the complement of the commuting
graph (if G is non-abelian), with equality if and only if G is
non-abelian.

Of course, the generating graph is not very interesting if G
cannot be generated by two elements. We could move into the
world of hypergraphs; but Andrea Lucchini found a way to
deal with this situation without leaving the world of graphs.
I The independence graph of G is the graph with vertex set

G, in which g and h are joined if and only if {g, h} is
contained in a minimal (with respect to inclusion)
generating set of G.

I The rank graph of G is the graph with vertex set G, in
which g and h are joined if and only if {g, h} is contained in
a generating set of minimum cardinality.
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Generating graphs and the hierarchy

Proposition

I The independence graph of G is contained in the complement of
the power graph of G.

I The rank graph is contained in the complement of the enhanced
power graph of G.

The first holds because, if h = gn, then h can be dropped from a
generating set containing g; the second since, if g and h are both
powers of k, we can drop g and h from the generating set and
include k to get a smaller generating set.
When does equality hold?
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Both questions on the preceding slide have been answered in a
recent preprint by Saul Freedman, Andrea Lucchini, Daniele
Nemmi and Colva Roney-Dougal. The second has also been
considered by Scott Harper.

I won’t state the detailed result. In each case, it is a rather short
list of soluble groups.
However, the proof requires CFSG together with a very
detailed knowledge of the finite simple groups, including
results about the set of all maximal subgroups containing a
given element, and the authors had to correct some statements
in the literature in the course of this.
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Invariable generation

A set {g1, . . . , gn} of elements of G invariably generates G if we
can replace each gi by an arbitrary conjugate and still have a
generating set; that is, {gx1

1 , . . . , gxn
n } is a generating set for

arbitrary x1, . . . , xn ∈ G.

Now we can define the invariable generating graph of G to
have an edge from g to h if {g, h} invariably generates G.
As earlier, we can see that the invariable generating graph is
contained in the complement of the supercommuting graph (if
G is non-abelian), and we could ask for which groups we have
equality; to my knowledge this has not yet been answered.
It is also possible to define invariable analogues of the
independence and rank graphs, which bear similar
relationships to the superpower graph and superenhanced
power graph. I think these questions haven’t even been
considered!
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Interesting graphs from groups

For my next topic, I will talk about the question of where to
look to find groups giving rise to “interesting” graphs, that
might be useful as networks, for example.

I will talk about power graphs of simple groups.
What makes a graph interesting? Perhaps we want large girth
or small diameter relative to the number of vertices. Perhaps
we just want a large automorphism group.
So I was astonished to find that, if G is the alternating group A5,
the smallest non-abelian finite simple group, then the power
graph of G has automorphism group of order
668594111536199848062615552000000.
What is going on?
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Twins

Two vertices v and w of a graph Γ are twins if they have the
same neighbours, apart from possibly one another. (Sometimes,
if we need to distinguish, we call them open or closed twins
according as their open or closed neighbourhoods are equal.)

If two vertices are twins, there is an automorphism of the graph
which swaps these two vertices and fixes all the others. So an
arbitrary graph will have a subgroup of its automorphism
group consisting of a direct product of symmetric groups on
the twin classes.
Random graphs don’t have twins, but graphs from groups
typically do. For example, in the power graph, two elements
which generate the same cyclic subgroup are twins. So, in A5,
we have a subgroup S6

4 × S10
2 of such automorphisms, which

are really of no interest.
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Twin reduction

The process of twin reduction in a graph consists of finding a
pair of twins and identifying them as long as this is possible.

Theorem
The result of twin reduction on a graph is (up to isomorphism)
independent of the order in which the reduction was carried out.
I will call the result of twin reduction on a graph Γ the cokernel
of Γ. So given a graph, we might want to perform twin
reduction on it before looking further.
But maybe we shrink it to a single vertex . . .
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Cographs

A cograph is a graph containing no induced subgraph which is
a 4-vertex path. This important class of graphs has been
rediscovered many times.

Theorem
I A graph is a cograph if and only if its cokernel is a single vertex.
I Cographs form the smallest class of graphs containing the

1-vertex graph and closed under taking the complement or
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When is the power graph a cograph?

We cannot answer the question completely; but Pallabi Manna,
Ranjit Mehatari and I were able to show:

Theorem
The power graph of a non-abelian finite simple group G is a cograph if
and only if one of the following holds:
I G = PSL(2, q) with q a power of 2, such that each of q− 1 and

q + 1 is a prime power or a product of two primes;
I G = PSL(2, q) with q an odd prime power, such that each of

(q− 1)/2 and (q + 1)/2 is a prime power or a product of two
primes;

I G = Sz(q), where each of q− 1, q−
√

2q + 1 and q +
√

2q + 1
is a prime power or the product of two primes;

I G = PSL(3, 4).

In the first three cases, deciding which values of q occur seems
to be a problem beyond the current reach of number theory!
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Some number theory

There is some hard number theory lurking in the above,
namely the problem of deciding when q satisfies the conditions
of the theorem:
I For which q (a power of 2) are q + 1 and q− 1 each either a

prime power or the product of two primes?
I For which q (an odd prime power) are (q + 1)/2 and

(q− 1)/2 each either a prime power or the product of two
primes?

I For which q (an odd power of 2) are q− 1, q +
√

2q + 1 and
q−

√
2q + 1 all either a prime power or the product of two

primes?

This happens surprisingly often. For example, 211 + 1 = 3 · 683
while 211 − 1 = 23 · 89. Are there only finitely many solutions?
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Uninteresting cases

We regard these cases as uninteresting.

There is a second class of simple groups, for which the answer
is only slightly more interesting. These are groups for which
the cokernel of the power graph (with an isolated vertex
removed if necessary) consists of many small components, all
isomorphic.
Examples include:
I G = A7: 35 components, each consisting of a tree with a

trivalent centre and three arms of length 3.
I G = PSL(2, 23): 253 components, each one K5 − P4.
I G = PSL(2, 25): 325 components, each one K5 − P4.

I do not know why the components in the second and third
case are the same.
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Interesting cases

However, there are several groups for which the cokernel of the
power graph (minus isolated vertex) is more interesting. Here
are three groups for which the graph is connected, together
with the number of vertices, diameter and girth of the resulting
graphs.

I G = PSL(3, 3): 754 vertices, diameter 11, girth 12.
I G = PSU(3, 3): 784 vertices, diameter 10, girth 3.
I G = M11: 1210 vertices, diameter 20, girth 20.

In each of these three cases, the automorphism group of the
graph is equal to the automorphism group of the group.
I am sure that more computation would reveal more interesting
things . . .
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Clique number and chromatic number

The clique number of a graph is the largest size of a set of
vertices with any two joined, while the chromatic number is the
smallest number of colours required for the vertices so that
adjacent vertices get different colours.

Clearly the clique number cannot exceed the chromatic number.
Examining these parameters for the power graphs and
enhanced power graphs of groups have revealed some
interesting things.
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Cliques

If a finite set S of elements of a group has the property that any
two of its elements are contained in a cyclic subgroup, then S is
contained in a finite subgroup.

Thus a maximal clique in the enhanced power graph is a
maximal cyclic subgroup, and so the clique number is the
largest order of an element of G.
What about the chromatic number? I formulated a
simple-looking combinatorial problem whose positive solution
would show that the chromatic number is equal to the clique
number. I spent a lot of time on it myself, and tried it out on
quite a few people; no-one got anywhere.
So I put it on my blog, and a student in Ho Chi Minh City
called Veronica Phan produced a short and elegant proof.
Veronica tells me she is a medical student who does
mathematics as a hobby.
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The power graph

In some respects the power graph is simpler.

A graph is called perfect if every induced subgraph has
chromatic number equal to clique number. A theorem of
Dilworth asserts that the comparability graph of a partial order
(with x ∼ y if x ≤ y or y ≤ x) is perfect.
In a group, the relation x→ y if y = xn for some x is a partial
preorder (a reflexive and transitive relation, not necessarily
antisymmetric). A simple twist shows that the comparability
graph of a partial preorder is perfect.
So the power graph of a finite group is perfect, and in
particular, its clique number and chromatic number are equal.
But what are they?
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Some number theory

We define a number-theoretic function f by the rule that f (n) is
the clique number of the power graph of a cyclic group of
order n.

This satisfies the recurrence

f (n) =

{
1 if n = 1,
φ(n) + f (n/p) otherwise,

where φ is Euler’s totient and p is the smallest prime divisor of
n.
From this it is easy to show that

φ(n) ≤ f (n) ≤ cφ(n),

where c = 2.6481017597 . . .
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The clique number of the power graph

It follows that the clique number of the power graph of an
arbitrary group G is the maximal value of f (n), where n runs
over the orders of elements of G. (This is not the same as the
value of f (n) where n is the maximum order, that is, the clique
number of the enhanced power graph.)

For example, let G = PGL(2, 11). The maximum orders of
elements with respect to divisibility are 10, 11 and 12; and
f (10) = f (12) = 9, but f (11) = 11. So the clique number (and
chromatic number) are 11.
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. . . for your attention.


