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Groups and graphs

I have spent quite some time in the last couple of years
thinking about various graphs defined on groups. I want to
take you on a quick tour through this beautiful landscape and
show you a few of the sights.

Groups are elegant; graphs are scruffy.

Nevertheless, they have a lot to say to one another, as we will
see.
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A theorem of Landau
In 1903, Landau proved the following theorem. κ(G) is the
number of conjugacy classes of the finite group G.

Theorem
Given a natural number k, there are only finitely many groups G for
which κ(G) = k.
The proof is straightforward. Let gG be the conjugacy class
containing g, and CG(g) the centraliser of g. By the
Orbit-Stabiliser Theorem, |gG| = |G|/|CG(g)|.
If g1, . . . , gk are conjugacy class representatives, and
|CG(gi)| = ni, then

|G| =
k

∑
i=1
|gG

i | = |G|
k

∑
i=1

1
ni

,

so ∑k
i=1(1/ni) = 1.

This equation has only finitely many solutions (the proof is an
exercise!) In any given solution, the largest ni is |CG(1)| = |G|.
So there are only finitely many possibilities for |G|.
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Quantification

Landau’s result implies that the minimum number f (n) of
conjugacy classes in a group of order n tends to infinity as
n→ ∞. How fast?

Erdős and Turán showed that f (n) ≥ log log n (logarithms to
base 2). This was improved to ε log n/(log log n)8 by Laci
Pyber; the exponent 8 was reduced to 7 by Thomas Keller, and
to 3 + ε by Barbara Baumeister, Attila Maróti and Hung
Tong-Viet. It is conjectured that f (n) ≥ C log n holds for some
constant C. In the other direction, f (n) ≤ (log n)3.
I will show you a different kind of extension.
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The SCC graph of a finite group

The soluble conjugacy class graph (for short, the SCC-graph) of
G is the graph whose vertex set is the set of conjugacy classes in
G, with an edge from xG to yG if and only if there exist x′ ∈ xG

and y′ ∈ yG such that 〈x′, y′〉 is a soluble group.

A couple of remarks:
I There are numerous variants of the definition: we could

replace “soluble” by “nilpotent”, “abelian”, “cyclic”, etc.;
and there are other variants possible too.

I Sometimes we need the expanded version of this graph,
where the vertex set is G, and two vertices x and y are
joined if xG and yG are joined in the SCC-graph. (This is
not the same as the solubility graph, in which x and y are
joined if 〈x, y〉 is soluble; but this will come in as well.)
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A theorem

So Landau bounded the order of a finite group in terms of the
number of vertices of the SCC graph. We (that is, Parthajit
Bhowal, Rajat Kanti Nath, Benjamin Sambale and I) can bound
it in terms of the clique number of this graph (the size of the
largest complete subgraph):

Theorem
Given a natural number k, there are only finitely many finite groups
whose SCC graph has clique number k.
The Theorem has further consequences: for examle, given g,
there are only finitely many finite groups whose SCC graph has
genus g.
The proof requires the Classification of Finite Simple Groups. I
will just give a sketch. But first, some recent results on soluble
groups.
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Soluble groups

If G is soluble, then clearly its solubility graph and its SCC
graph are both complete.

The converses of these results also hold. It follows from John
Thompson’s classification of N-groups that a finite group is
soluble if and only if all its 2-generator subgroups are soluble,
that is, if and only if the solubility graph is complete.
Then S. Dolfi, R. M. Guralnick, M. Herzog and C. E. Praeger
extended this to show that a finite group is soluble if and only
if its SCC graph is complete.
Moreover, the set of vertices joined to all others in the solubility
graph of G is its soluble radical (largest soluble normal
subgroup), a theorem of R. Guralnick, B. Kunyavskii, E. Plotkin
and A. Shalev.
But the analogous result for the SCC graph is false. For q a
power of 2, the groups PSL(2, q) have one conjugacy class of
involutions, and every element is inverted by some involution,
so the involution class is joined to all others in the SCC graph.
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Sketch proof

Step 1: We can assume that G is not soluble (by Dolfi et al. and
Landau).

Step 2: We can assume that the soluble radical S(G) is trivial.
For if G/S(G) is bounded, then the number of conjugacy
classes of S(G) is bounded (each G-class splits into at most
|G/S(G)| S(G)-classes), so by Landau |S(G)| is also bounded.
Step 3: The number of factors in the socle of G is bounded, and
it suffices to assume there is just one factor.
Step 4: Now we look through the simple groups (only a light
touch is required).
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Some problems

Problem
Quantify this result: that is, find a good explicit bound for |G| in
terms of the clique number of its SCC graph.

Problem
Does a similar theorem hold if the SCC graph is replaced by the NCC
graph (the nilpotent conjugacy class graph), with gG and hG joined if
there exist g′ ∈ gG and h′ ∈ hG such that 〈g′, h′〉 is nilpotent), or
even in the CCC graph (the commuting conjugacy class graph)?

Problem
Characterise the vertices joined to all others in the SCC graph of a
group.



Other graphs

There are many further graphs associated with a group,
carrying various information about the group. I am going to
show you a couple of rather unrelated pieces of information.

Here are two further graphs. In each case the vertex set is the
whole group G.
I the power graph: g ∼ h if one of g and h is a power of the

other;
I the enhanced power graph: g ∼ h if both g and h are

powers of an element k (equivalently, 〈g, h〉 is cyclic).
Clearly the edge set of the power graph is contained in that of
the enhanced power graph. But maybe there is not too much
difference between them . . .
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Power graph equals enhanced power graph

The Gruenberg–Kegel graph of a finite group G (sometimes
called the prime graph) has as vertices the prime divisors of |G|,
with an edge from p to q if G contains an element of order pq.

This graph was introduced by Gruenberg and Kegel to study
the integral group ring of G. Their theorem, refined by later
authors, describes groups for which the Gruenberg–Kegel
graph is disconnected.

Theorem
For a finite group G, the following conditions are equivalent:
I the power graph and enhanced power graph of G coincide;
I every element of G has prime power order (such groups are called

EPPO groups);
I the Gruenberg–Kegel graph of G has no edges.
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Approximately equal?

All EPPO groups are known: the Gruenberg–Kegel theorem is
an essential part of this.

How might we say that these graphs are approximately equal?
One way is to choose a monotone graph parameter (one which
cannot decrease when edges are added) and ask for which
groups the values of this parameter on the two graphs are
equal. Here are a couple of examples.
The matching number of a graph is the maximum number of
pairwise disjoint edges.

Theorem
For any finite group G, the power graph and enhanced power graph of
G have the same matching number.
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For any finite group G, the power graph and enhanced power graph of
G have the same matching number.



Clique number

Theorem
For a finite group G, the power graph and enhanced power graph have
the same clique number if and only if the maximum order of an
element of G is a prime power.
Simple enough, but it hides some difficulties. For example, in
the group G = PGL(2, q), the maximum order of an element is
q + 1; so G has this property if and only if one of

I q is a Mersenne prime;
I q + 1 is a Fermat prime;
I q = 8.

The last case uses the solution to the Catalan conjecture by
Mihăilescu in 2002. Of course, the determination of Fermat and
Mersenne primes is currently right out of reach!
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Clique number, 2

If the clique numbers of these graphs are not equal, how far
apart can they be? Let Γ1 and Γ2 be the power graph and
enhanced power graph of G, and ω(Γ) the clique number of Γ.

Now ω(Γ1) ≥ φ(ω(Γ2), where φ is Euler’s totient. (If G is cyclic
then a clique of maximal size in Γ1 is the set of generators of G
while a clique of maximal size in Γ2 is the whole group.)

Theorem
There is a constant c, roughly 2.6481017597, such that

lim sup ω(Γ1)/φ(ω(Γ2)) = c.

Since φ(n) ≥ e−γn/ log log n, this says that the two parameters
are not too far apart.

The constant is given by c = ∑
k≥0

k

∏
i=1

1
pi − 1

, where p1, p2, . . . are

the primes in order.
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Interesting graphs from groups

For my final topic, I will talk about the question of where to
look to find groups giving rise to “interesting” graphs, that
might be useful as networks, for example.

I will talk about power graphs of simple groups.
What makes a graph interesting? Perhaps we want large girth
or small diameter relative to the number of vertices. Perhaps
we just want a large automorphism group.
So I was astonished to find that, if G is the alternating group A5,
the smallest non-abelian finite simple group, then the power
graph of G has automorphism group of order
668594111536199848062615552000000.
What is going on?
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Twins

Two vertices v and w of a graph Γ are twins if they have the
same neighbours, apart from possibly one another. (Sometimes,
if we need to distinguish, we call them open or closed twins
according as their open or closed neighbourhoods are equal.)

If two vertices are twins, there is an automorphism of the graph
which swaps these two vertices and fixes all the others. So an
arbitrary graph will have a subgroup of its automorphism
group consisting of a direct product of symmetric groups on
the twin classes.
Random graphs don’t have twins, but graphs from groups
typically do. For example, in the power graph, two elements
which generate the same cyclic subgroup are twins. So, in A5,
we have a subgroup S6

4 × S10
2 of such automorphisms, which

are really of no interest.
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Twin reduction

The process of twin reduction in a graph consists of finding a
pair of twins and identifying them as long as this is possible.

Theorem
The result of twin reduction on a graph is (up to isomorphism)
independent of the order in which the reduction was carried out.
I will call the result of twin reduction on a graph Γ the cokernel
of Γ. So given a graph, we might want to perform twin
reduction on it before looking further.
But maybe we shrink it to a single vertex . . .
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Cographs

A cograph is a graph containing no induced subgraph which is
a 4-vertex path. This important class of graphs has been
rediscovered many times.

Theorem
I A graph is a cograph if and only if its cokernel is a single vertex.
I Cographs form the smallest class of graphs containing the

1-vertex graph and closed under taking the complement or
disjoint unions.

Problem
For which groups is the power graph a cograph?
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When is the power graph a cograph?

We cannot answer the question completely; but Pallabi Manna,
Ranjit Mehatari and I were able to show:

Theorem
The power graph of a non-abelian finite simple group G is a cograph if
and only if one of the following holds:
I G = PSL(2, q) with q a power of 2, such that each of q− 1 and

q + 1 is a prime power or a product of two primes;
I G = PSL(2, q) with q an odd prime power, such that each of

(q− 1)/2 and (q + 1)/2 is a prime power or a product of two
primes;

I G = Sz(q), where each of q− 1, q−
√

2q + 1 and q +
√

2q + 1
is a prime power or the product of two primes;

I G = PSL(3, 4).

In the first three cases, deciding which values of q occur seems
to be a problem beyond the current reach of number theory!
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Uninteresting cases

We regard these cases as uninteresting.

There is a second class of simple groups, for which the answer
is only slightly more interesting. These are groups for which
the cokernel of the power graph (with an isolated vertex
removed if necessary) consists of many small components, all
isomorphic.
Examples include:
I G = A7: 35 components, each consisting of a tree with a

trivalent centre and three arms of length 3.
I G = PSL(2, 23): 253 components, each one K5 − P4.
I G = PSL(2, 25): 325 components, each one K5 − P4.

I do not know why the components in the second and third
case are the same.
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Interesting cases

However, there are several groups for which the cokernel of the
power graph (minus isolated vertex) is more interesting. Here
are three groups for which the graph is connected, together
with the number of vertices, diameter and girth of the resulting
graphs.

I G = PSL(3, 3): 754 vertices, diameter 11, girth 12.
I G = PSU(3, 3): 784 vertices, diameter 10, girth 3.
I G = M11: 1210 vertices, diameter 20, girth 20.

In each of these three cases, the automorphism group of the
graph is equal to the automorphism group of the group.
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graphs.
I G = PSL(3, 3): 754 vertices, diameter 11, girth 12.
I G = PSU(3, 3): 784 vertices, diameter 10, girth 3.
I G = M11: 1210 vertices, diameter 20, girth 20.

In each of these three cases, the automorphism group of the
graph is equal to the automorphism group of the group.



The case G = M11

In this case, the 1210 vertices fall into orbits of lengths 165
(twice), 220 and 660 under the action of M11. The graph looks
like this:
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From this we can build a bipartite graph on 165 + 220 vertices,
where the vertices in the two parts have valencies 4 and 3
respectively.
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This graph has diameter and girth 10.

Since it is bipartite, it is presumably the incidence graph of a
nice geometry with 165 points and 220 lines, having
automorphism group M11. Two points lie on at most one line,
and there are no triangles or quadrilaterals. I am not sure
whether this geometry is already known, or what other
properties it may have.
I suspect that similar beautiful objects can be extracted from
other finite simple groups in a similar way.
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Some speculations

Question
For which finite simple groups is the cokernel of the power graph (less
isolated vertex) connected? In particular, is this the case for most
groups of Lie type with rank greater than 1, and for most sporadic
groups?

Question
If this graph is connected, is it the case that its automorphism group
is the same of that of the group?

Question
Find general results about the numbers of vertices, diameter, girth,
and other parameters for the graphs in the case where they are
connected.

Question
What happens for other graphs defined on groups?
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