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Graphs on groups

This is part of a big project about graphs on groups. This
project has had some impact, though not the sort that goes into
the REF:

I I helped run a large research discussion group on it in
south India, which has led to a large number of papers, as
well as invitations for me to talk (virtually) at various
places in India;

I over the last year and a bit, which has been a difficult time
for me, it has been a real lifeline; thinking about these
questions has helped keep darker thoughts away.

This talk will show you a couple of plums from the project.
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A theorem of Landau

I’ll introduce the topic in a roundabout way, with a theorem of
Landau from 1904. If G is a group, let xG be the G-conjugacy
class containing x.

Theorem
Given a natural number k, there are only finitely many finite groups
which have k conjugacy classes.

Proof.
Let x1, . . . , xk be conjugacy class representatives. Then by the
Orbit–Stabiliser Theorem, |xG

i | = |G|/|CG(xi)|. These class sizes
sum to |G|; so, if ni = |CG(xi)|, we have

k

∑
i=1

1
ni

= 1.

This equation has only finitely many solutions [Exercise!], and
in any solution (n1, . . . , nk), the largest ni is |CG(1)| = |G|.
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Quantification

Landau’s result implies that the minimum number f (n) of
conjugacy classes in a group of order n tends to infinity as
n→ ∞. How fast?

Erdős and Turán showed that f (n) ≥ log log n (logarithms to
base 2). This was improved by Laci Pyber to ε log n/(log log n)8

by Laci Pyber; the exponent 8 was reduced to 7 by Thomas
Keller, and to 3 + ε by Barbara Baumeister, Attila Maróti and
Hung Tong-Viet. It is conjectured that a bound of the form
f (n) ≥ C log n holds for some constant C. In the other direction,
f (n) ≤ (log n)3.
I will show you a different kind of extension.
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Hung Tong-Viet. It is conjectured that a bound of the form
f (n) ≥ C log n holds for some constant C. In the other direction,
f (n) ≤ (log n)3.
I will show you a different kind of extension.



The SCC graph of a finite group

The soluble conjugacy class graph (for short, the SCC-graph) of
G is the graph whose vertex set is the set of conjugacy classes in
G, with an edge from xG to yG if and only if there exist x′ ∈ xG

and y′ ∈ yG such that 〈x′, y′〉 is a soluble group.

A couple of remarks:
I There are numerous variants of the definition: we could

replace “soluble” by “nilpotent”, “abelian”, “cyclic”, etc.;
and there are other variants possible too.

I Sometimes we need the expanded version of this graph,
where the vertex set is G, and two vertices x and y are
joined if xG and yG are joined in the SCC-graph. (This is
not the same as the solubility graph, in which x and y are
joined if 〈x, y〉 is soluble; but this will come in as well.)
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A theorem

So Landau bounded the order of a finite group in terms of the
number of vertices of the SCC graph. We (that is, Parthajit
Bhowal, Rajat Kanti Nath, Benjamin Sambale and I) can bound
it in terms of the clique number of this graph (the size of the
largest complete subgraph):

Theorem
Given a natural number k, there are only finitely many finite groups
whose SCC graph has clique number k.
The Theorem has further consequences: for examle, given g,
there are only finitely many finite groups whose SCC graph has
genus g.
The proof requires the Classification of Finite Simple Groups. I
will just give a sketch. But first, some recent results on soluble
groups.
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Soluble groups

If G is soluble, then clearly its solubility graph and its SCC
graph are both complete.

The converses of these results also hold. It follows from John
Thompson’s classification of N-groups that a finite group is
soluble if and only if all its 2-generator subgroups are soluble,
that is, if and only if the solubility graph is complete.
Then S. Dolfi, R. M. Guralnick, M. Herzog and C. E. Praeger
extended this to show that a finite group is soluble if and only
if its SCC graph is complete.
Moreover, the set of vertices joined to all others in the solubility
graph of G is its soluble radical (largest soluble normal
subgroup), a theorem of R. Guralnick, B. Kunyavskii, E. Plotkin
and A. Shalev.
But the analogous result for the SCC graph is false. For q a
power of 2, the groups PSL(2, q) have one conjugacy class of
involutions, and every element is inverted by some involution,
so the involution class is joined to all others in the SCC graph.
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Sketch proof

Step 1: We can assume that G is not soluble (by Dolfi et al. and
Landau).

Step 2: We can assume that the soluble radical S(G) is trivial.
For if G/S(G) is bounded, then the number of conjugacy
classes of S(G) is bounded (each G-class splits into at most
|G/S(G)| S(G)-classes), so by Landau |S(G)| is also bounded.
Step 3 The number of factors in the socle of G is bounded, and
it suffices to assume there is just one factor.
Step 4: Now we look through the simple groups (only a light
touch is required).
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Some other graphs . . .

Two other graphs on the whole group which have been studied
are the commuting graph (two vertices joined if they commute)
and the power graph (two vertices joined if one is a power of
the other).

From these, we define four further graphs:
I on the set of conjugacy classes, the CCC graph (two classes

xG and yG joined if there exist x′ ∈ xG and y′ ∈ yG with
x′y′ = y′x′) and the PCC graph (two classes xG and yG

joined if there exist x′ ∈ xG and y′ ∈ yG with one a power
of the other);

I on the whole group, the expanded CCC and PCC graphs,
with x and y joined if xG and yG are joined in the CCC or
PCC graph respectively. (These contain the commuting
and power graphs respectively.)
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. . . and their relations

The advantage of the expanded graphs is that they have a
common vertex set G and so can be compared with other
graphs defined on G.

The next theorem was proved by G. Arunkumar, Rajat Kanti
Nath, Lavanya Selvaganesh, and me.

Theorem
Let G be a finite group.
I The expanded CCC graph is equal to the commuting graph if

and only if G is a 2-Engel group (a group satisfying the identity
[x, y, y] = 1).

I The expanded PCC graph is equal to the power graph if and only
if G is a Dedekind group (a group with all subgroups normal).
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Dedekind groups are known: they are either abelian, or the
direct product of a quaternion group, an elementary abelian
2-group, and an abelian group of odd order (a result of
Dedekind).

2-Engel groups are not completely known, but they lie between
the classes of nilpotent groups of class 2 and of class 3. It is
clear that a nilpotent group of class 2 (satisfying [x, y, z] = 1) is
2-Engel; the fact that 2-Engel groups are 3-nilpotent was
proved independently by Hopkins and Levi (the same Levi
after whom the Levi graph of a block design is named).

Question
Determine the groups for which the expanded SCC graph is equal to
the solubility graph.
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Universality

A class C of finite graphs is universal if every finite graph is an
induced subgraph of some graph of a graph in C.

Various classes of graphs defined on groups are known to be
universal, for example the enhanced power graph (two
elements joined if they generate a cyclic group) and the
commuting graph.
When I wrote the abstract for this talk, I believed that the class
of SCC graphs of finite groups was universal. But,
embarrassingly, all I could prove was a very weak result, that
every threshold graph can be embedded in the SCC graph of
some group, and in order to do this, I needed a big result, the
Green–Tao theorem on primes in arithmetic progression.
Fortunately, I can do better now . . .
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Universality of SCC graphs

Theorem
The class of SCC graphs of finite groups is universal.

Sketch proof:
I We show that the complete graph minus an edge can be

represented: Take the first n primes p1, . . . , pn, and take the
conjugacy classes of pi-cycles in SN, where
N = pn−1 + pn − 1. Each pair of conjugacy classes contains
commuting elements except the last two.

I We show that the class of representable graphs on n
vertices is closed under intersection of edge sets. (The SCC
of a direct product of groups is the strong product of the
SCCs of the two groups, and in the strong product of
graphs on the same vertex set, the diagonal induces the
intersection.)
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A question

Question
How large does a group need to be for its SCC graph to embed a given
n-vertex graph (or all n-vertex graphs)?

The group found in the proof can be rather large!
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Other graphs

The graph used to prove this has the property that two adjacent
classes are actually joined in the CCC graph (commuting
conjugacy graph) of G, while non-adjacent classes are not
joined in the SCC graph. So CCC graphs and, for example,
NCC graphs (nilpotent conjugacy class graphs) are also
universal.

The EPCC graphs (enhanced power conjugacy class graphs), in
which xG and yG are joined if these classes contain elements x′

and y′ which generate a cyclic group, are also universal, by a
similar but slightly more complicated argument.
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A problem

Question
Is it true that there are only finitely many finite groups whose
nilpotent conjugacy class graph (NCC graph) has given clique
number? What about the commuting conjugacy class graph (CCC
graph)?
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. . . for your attention.


