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Graphs on groups

By this title, I mean (to a first approximation) graphs whose
vertex set is the set of elements in a group G, and which are
defined in terms of the structure of G. This means that they are
invariant under the automorphism group of G. (I am not
considering Cayley graphs here.)

The simplest example is the commuting graph of G, in which x
and y are joined if and only if xy = yx. This was used by Brauer
and Fowler in their seminal 1955 paper on centralizers of
involutions in simple groups of even order. (Brauer and Fowler
don’t use the word “graph”, but make extensive use of the
distance function in the graph after the identity is deleted.
In the commuting graph, elements of the centre are joined to
everything; so for considerations of connectedness, diameter,
etc., it makes sense to remove the centre. But for other
questions it is better to leave it in, and I shall do so. I will
denote this graph by Com(G).
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Graphs on groups, 2

Subsequently, further graphs were defined. Among them, these
two:

The power graph Pow(G) has an edge joining x to y if one of x
and y is a power of the other. [It was originally a directed
graph, with an arc from x to y if y is a power of x, but is now
more usually considered as an undirected graph.]
The enhanced power graph EPow(G) has an edge joining x to y
if there exists z such that both x and y are powers of z
(equivalently, if x and y generate a cyclic group).
These three graphs form a hierarchy under the relation
“spanning subgraph”; that is,
E(Pow(G)) ⊆ E(EPow(G)) ⊆ E(Com(G)).
There are several further graphs which can be defined,
including the solubility graph (with an edge joining x and y if
〈x, y〉 is soluble) and the generating graph (with an edge if
〈x, y〉 = G). But I will stick with three for now.



Graphs on groups, 2

Subsequently, further graphs were defined. Among them, these
two:
The power graph Pow(G) has an edge joining x to y if one of x
and y is a power of the other. [It was originally a directed
graph, with an arc from x to y if y is a power of x, but is now
more usually considered as an undirected graph.]

The enhanced power graph EPow(G) has an edge joining x to y
if there exists z such that both x and y are powers of z
(equivalently, if x and y generate a cyclic group).
These three graphs form a hierarchy under the relation
“spanning subgraph”; that is,
E(Pow(G)) ⊆ E(EPow(G)) ⊆ E(Com(G)).
There are several further graphs which can be defined,
including the solubility graph (with an edge joining x and y if
〈x, y〉 is soluble) and the generating graph (with an edge if
〈x, y〉 = G). But I will stick with three for now.



Graphs on groups, 2

Subsequently, further graphs were defined. Among them, these
two:
The power graph Pow(G) has an edge joining x to y if one of x
and y is a power of the other. [It was originally a directed
graph, with an arc from x to y if y is a power of x, but is now
more usually considered as an undirected graph.]
The enhanced power graph EPow(G) has an edge joining x to y
if there exists z such that both x and y are powers of z
(equivalently, if x and y generate a cyclic group).

These three graphs form a hierarchy under the relation
“spanning subgraph”; that is,
E(Pow(G)) ⊆ E(EPow(G)) ⊆ E(Com(G)).
There are several further graphs which can be defined,
including the solubility graph (with an edge joining x and y if
〈x, y〉 is soluble) and the generating graph (with an edge if
〈x, y〉 = G). But I will stick with three for now.



Graphs on groups, 2

Subsequently, further graphs were defined. Among them, these
two:
The power graph Pow(G) has an edge joining x to y if one of x
and y is a power of the other. [It was originally a directed
graph, with an arc from x to y if y is a power of x, but is now
more usually considered as an undirected graph.]
The enhanced power graph EPow(G) has an edge joining x to y
if there exists z such that both x and y are powers of z
(equivalently, if x and y generate a cyclic group).
These three graphs form a hierarchy under the relation
“spanning subgraph”; that is,
E(Pow(G)) ⊆ E(EPow(G)) ⊆ E(Com(G)).

There are several further graphs which can be defined,
including the solubility graph (with an edge joining x and y if
〈x, y〉 is soluble) and the generating graph (with an edge if
〈x, y〉 = G). But I will stick with three for now.



Graphs on groups, 2

Subsequently, further graphs were defined. Among them, these
two:
The power graph Pow(G) has an edge joining x to y if one of x
and y is a power of the other. [It was originally a directed
graph, with an arc from x to y if y is a power of x, but is now
more usually considered as an undirected graph.]
The enhanced power graph EPow(G) has an edge joining x to y
if there exists z such that both x and y are powers of z
(equivalently, if x and y generate a cyclic group).
These three graphs form a hierarchy under the relation
“spanning subgraph”; that is,
E(Pow(G)) ⊆ E(EPow(G)) ⊆ E(Com(G)).
There are several further graphs which can be defined,
including the solubility graph (with an edge joining x and y if
〈x, y〉 is soluble) and the generating graph (with an edge if
〈x, y〉 = G). But I will stick with three for now.



When are two of the graphs equal?

It is interesting first to find the classes of groups for which the
hierarchy is not strict. We obtain known and important classes:

Theorem
I The power graph of G is equal to the enhanced power graph if

and only if every element of G has prime power order.
I The enhanced power graph of G is equal to the commuting graph

if and only if every Sylow subgroup of G is cyclic or generalized
quaternion.

In each case, all groups satisfying the condition have been
determined.
See my paper in the International Journal of Group Theory, 11
(2022), 43–124.
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A research discussion group in south India

From March to August 2021, Ambat Vijayakumar and Aparna
Lakshmanan at CUSAT in Kochi, Kerala, ran an on-line
discussion group on graphs and groups, which led to many
new results and ideas.

One of the participants was Lavanya Selvaganesh, who defined
a graph she called the superpower graph of G, in which x and y
are joined if there exist x′ and y′, having the same order as x
and y respectively, which are joined in the power graph.
This led us (G. Arunkumar, Rajat Kanti Singh, Lavanya
Selvaganesh and me) to the following generalization (arXiv
2112.02395) . . .
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Into the second dimension

Let A be a graph on the group G, and B a partition of G.

I The B superA graph on G has vertex set G, with x joined to
y if there exist elements x′ and y′, B-equivalent to x and y
respectively, such that x′ and y′ are A-adjacent. (By
convention, we take vertices in the same B-class to be
adjacent.)

I The condensed B superA graph on G has vertex set the set
of B-classes, two classes C and D joined if and only if there
exist x ∈ C and y ∈ D such that x and y are A-adjacent.

A condensed supergraph can be expanded by blowing each
vertex up to a clique of the appropriate size.
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Some equivalence relations

I will consider three equivalence relations:

I equality;
I conjugacy;
I same order.

Others can be imagined.
With equality, we just get the original graph A. I will denote the
conjugacy and order superpower graphs by Conj Pow(G) and
Ord Pow(G), with similar notation for the superenhanced
power graphs and supercommuting graphs.
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The 2-dimensional hierarchy

Here is the resulting 2-dimensional hierarchy:
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Motivation

To convince you that this is not just generalization for its own
sake, I need to show you two things: the supergraphs are
closely connected to the group structure; and there are some
interesting results, or results with interesting proofs,
concerning these graphs. This I hope to do in the rest of this
talk.

The first result I will show you was done as a “proof of
concept”.
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Completeness

Theorem
The following table describes groups whose power graph, enhanced
power graph, commuting graph, or their conjugacy or order
supergraph is complete.

power graph enhanced commuting
power graph graph

equality cyclic cyclic abelian
p-group

conjugacy cyclic cyclic abelian
p-group

order p-group (∗) (∗)

Here (∗) means that the group G has an element whose order is
the exponent m of G; equivalently, the spectrum of G (the set of
orders of elements of G) is the set of all divisors of m.
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Coincidences

I have cheated you slightly:

Theorem
For any finite group G, the graphs Ord Com(G) and
Ord EPow(G) coincide.
So there are only eight different graphs, not nine. There are no
further cases in which two of the graphs coincide for all groups.
For other pairs, we know something:

Theorem
I The conjugacy supercommuting graph of G is equal to the

commuting graph if and only if G is a 2-Engel group, that is,
satisfies the identity[x, y, y] = 1;

I the conjugacy superpower graph of G is equal to the power graph
if and only if G is a Dedekind group, that is, one in which every
subgroup is normal.
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Comments

Dedekind groups are all known. Such a group is either abelian
or of the form A× B× C where A is a quaternion group, B an
elementary abelian 2-group, and C an abelian group of odd
order.

Engel groups have had a lot of attention. Any nilpotent group
of class 2 is 2-Engel, and every 2-Engel group is nilpotent of
class at most 3 (shown independently by Hopkins and Levi).
The first part uses the following result:

Theorem
A group G satisfies the 2-Engel identity if and only if every
centralizer is a normal subgroup.
The only proof we found in the literature was a StackExchange

post by Korhonen, using a result of Kappe. Information on
earlier proofs welcome!
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A problem

Problem
Determine the class of groups for which equality holds between two
adjacent graphs in the 2-dimensional hierarchy in the remaining
cases.

There are twelve edges in the diagram I showed you earlier,
and we have only dealt with five of them, so plenty remains to
be done.
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Dominant vertices

Finding the dominant vertices in these graphs (those joined to
all others) is an extension of the problem of determining when
they are complete. Here are some results:

Theorem
I The set of dominant vertices in the power graph of G is the whole

of G, if G is a cyclic p-group; the identity and the generators of G
, if G is cyclic but not a p-group; the centre, if G is a generalized
quaternion group; and only the identity in all other cases.

I The set of dominant vertices in the enhanced power graph of G is
the cyclicizer of G, the product of the Sylow p-subgroups of
Z(G) for those primes p for which the Sylow subgroups of G are
cyclic or generalized quaternion.

I The set of dominant vertices in the commuting graph is the
centre of G.
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And for the super graphs . . .

Theorem
I If A is the power graph, enhanced power graph, or commuting

graph, then the set of dominant vertices in the conjugacy superA
graph of G is the same as the set of dominant vertices in the A
graph.

I Let G be a group not or prime power order, having exponent m.
Then the set of dominant vertices in the order superpower graph
consists of the identity and the elements of order m (if any).

The remaining case is the order supercommuting graph, which
is an open problem.
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Moving up

Some of the condensed supergraphs had been looked at earlier.
We move up in the hierarchy and examine the partition into
conjugacy classes. Thus the condensed conjugacy superA
graph has vertices the conjugacy classes, two classes C and D
adjacent if there are elements x ∈ C, y ∈ D which are adjacent
in the graph A.

The rule for adjacency in the commuting graph can be written:
x and y are joined if 〈x, y〉 is abelian. Inspired by this one can
define the nilpotence and solubility graphs, in which x and y
are joined if the group they generate is nilpotent or soluble
respectively.
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The SCC-graph

The condensed conjugacy supergraphs for the commuting and
nilpotent graphs were studied by Herzog, Longobardi and Maj
and by Mohammadian and Erfanian respectively, under the
names commuting conjugacy class graph (CCC-graph) and
nilpotent conjugacy class graph (NCC-graph) respectively. We
examined the analogous soluble conjugacy class graph
(SCC-graph). Recall that the vertices are the conjugacy classes,
two classes C and C′ joined if there exist x ∈ C and y ∈ C′ such
that 〈x, y〉 is soluble.

The team grew as the research progressed. The paper is by
Parthajit Bhowal, Rajat Kanti Nath, Benjamin Sambale and me
(arXiv 2112.02613).
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Completeness

An old and well-known result of Landau in 1903 states that
there are only finitely many finite groups with any given
number of conjugacy classes.

Now if G is a soluble group, then any two elements generate a
soluble group, and so the soluble graph is complete. The
converse is also true. It follows from Thompson’s classification
of N-groups that, if any two elements of G generate a soluble
group, then G is soluble. This was generalized by Dolfi,
Guralnick, Herzog and Praeger as follows:

Theorem
The SCC-graph of G is complete if and only if G is soluble.
Combining this with Landau’s result, we see that there are only
finitely many finite soluble groups whose SCC-graph has given
clique number.
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Clique number

We were able to extend this as follows.

Theorem
Given a positive integer d, there are only finitely many finite groups
G such that the clique number of the SCC-graph of G is equal to d.

In particular, the finite groups in which the clique number of
the graph is at most 3 are the cyclic groups of orders 1, 2 and 3
and the symmetric group of degree 3.
We have not examined the growth rate for the number or
largest order of such a group. Also, we have not tried to find all
groups whose SCC-graph has clique number 4 (these include
the alternating group A5).
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Proof sketch

The proof proceeds as follows. By the results on the previous
slide we may assume that G is not soluble. Then we can reduce
to the case where the soluble radical is trivial, and further to the
case where the socle is almost simple; then the Classification of
Finite Simple Groups gives the result.

An alternative proof when we know the group is simple is the
following. If the clique number of the SCC-graph is bounded,
then the number of prime divisors of an element order in G is
bounded. A recent result of Hung and Yang then bounds the
number of prime divisors of G. Then we can bound these prime
divisors, and hence the exponent of G. But there are only
finitely many finite simple groups of given exponent (an old
result of Gareth Jones).
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Universality

I will finish with some remarks on the question: Given a type A
of graph on groups, which finite graphs can be embedded in
A(G) as an induced subgraph for some group G?

The power graph, and its two supergraphs, are comparability
graphs of partial orders, and so any graph which can be
embedded must also be a comparability graph of a partial
order. In particular, such graphs are perfect.
The enhanced power graph and commuting graph are both
universal. Indeed the following theorem holds:
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Theorem
Given a finite complete graph with edges coloured red, green and blue
in any manner, there is a group G such that red edges belong to
EPow(G), green edges to Com(G) but not EPow(G), and blue
edges not to Com(G).

This theorem shows that enhanced power graphs are universal
(ignoring the blue-green distinction), and commuting graphs
are universal (ignoring the red-green distinction), but also
graphs which are the differences between the edge sets of these
two are universal (ignoring the red-blue distinction).
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Threshold graphs

I am going to give you a very weak result on SCC-graphs (but
it is the best I can do at the moment). First I define the class of
graphs involved.

A threshold graph is one in which each vertex x has a real
number weight w(x), and there is a threshold t, such that x and
y are joined if and only if w(x) + w(y) > t.
Threshold graphs form the class defined by forbidding three
induced subgraphs on four vertices: the cycle, the path, and
two disjoint edges.
They are also the class of graphs obtained by adding vertices
one at a time, each new vertex joined to either all or none of the
existing vertices.
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SCC-graphs

Proposition

For any threshold graph Γ, there is a finite group G such that the
SCC-graph of G contains Γ as an induced subgraph.

This is unlikely to be best possible. I don’t know any graph
which can’t be so embedded. But it is the best I can do at
present.
Even more embarrassingly, this rather weak result uses the
celebrated theorem of Green and Tao about primes in
arithmetic progression!
Certainly not all SCC-graphs are threshold. Taking G = S7, we
can use the classes of a 7-cycle, two disjoint 3-cycles, a 4-cycle,
and a 5-cycle to get a path on four vertices.



SCC-graphs

Proposition

For any threshold graph Γ, there is a finite group G such that the
SCC-graph of G contains Γ as an induced subgraph.
This is unlikely to be best possible. I don’t know any graph
which can’t be so embedded. But it is the best I can do at
present.

Even more embarrassingly, this rather weak result uses the
celebrated theorem of Green and Tao about primes in
arithmetic progression!
Certainly not all SCC-graphs are threshold. Taking G = S7, we
can use the classes of a 7-cycle, two disjoint 3-cycles, a 4-cycle,
and a 5-cycle to get a path on four vertices.



SCC-graphs

Proposition

For any threshold graph Γ, there is a finite group G such that the
SCC-graph of G contains Γ as an induced subgraph.
This is unlikely to be best possible. I don’t know any graph
which can’t be so embedded. But it is the best I can do at
present.
Even more embarrassingly, this rather weak result uses the
celebrated theorem of Green and Tao about primes in
arithmetic progression!

Certainly not all SCC-graphs are threshold. Taking G = S7, we
can use the classes of a 7-cycle, two disjoint 3-cycles, a 4-cycle,
and a 5-cycle to get a path on four vertices.



SCC-graphs

Proposition

For any threshold graph Γ, there is a finite group G such that the
SCC-graph of G contains Γ as an induced subgraph.
This is unlikely to be best possible. I don’t know any graph
which can’t be so embedded. But it is the best I can do at
present.
Even more embarrassingly, this rather weak result uses the
celebrated theorem of Green and Tao about primes in
arithmetic progression!
Certainly not all SCC-graphs are threshold. Taking G = S7, we
can use the classes of a 7-cycle, two disjoint 3-cycles, a 4-cycle,
and a 5-cycle to get a path on four vertices.



Sketch proof

Here is a brief sketch. We are given a threshold graph, with
vertex weights and threshold. We adjust these slightly so that
they are rational, and multiply up to make them integers.

Now we apply Green and Tao to scale up further so that the
weights are primes chosen from an arithmetic progression,
while the threshold is greater than all the weights.
Now let G be the symmetric group whose degree is the
threshold, and take the vertices to be conjugacy classes of
cycles of the appropriate prime length. If the sum of two
primes is below the threshold, there are conjugates with
disjoint support, generating an abelian group; but if it is above,
then any two supports intersect, and so the prime cycles
generate the alternating group.
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