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Synchronizing automata

An automaton is a machine which has a set Ω of states, and can
read symbols from an alphabet A. It is a very simple machine:
all it does at a given time step is to read a symbol and change
its state.

An automaton can read a word or sequence of symbols; each
symbol causes a state change.
An automaton is synchronizing if there is a word, called a reset
word, such that when the automaton reads this word, it ends
up in a fixed state, no matter where it starts.
Reset words are useful to bring a machine into a known state
before applying further transformations to it.
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An infamous problem

Here is a synchronizing automaton.
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It can be verified that BRRRBRRRB is a reset word (and indeed
that it is the shortest possible reset word for this automaton).

Problem
Show that, if an n-state automaton is synchronizing, it has a reset
word of length at most (n− 1)2.
This is the Černý conjecture, posed in the 1960s and still open.
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Transformation monoids

The Černý conjecture seems to have nothing to do with either
graphs or groups; but wait . . .

Each letter of the alphabet corresponds to a transition on the set
Ω of states. Reading a word corresponds to composing the
transitions. So the set of all possible transitions is closed under
composition and contains the identity map (corresponding to
the empty word): so

An automaton can be represented as a transformation
monoid on the set Ω of states, having a distinguished
set of generators. The automaton is synchronizing if
and only if the monoid contains an element of rank 1.

So the Černý conjecture is a question about transformation
monoids, and semigroups enter the picture.
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Graphs

Graphs here will be ordinary simple graphs: no loops, multiple
edges, directed edges, or colours/weights on the edges.

An endomorphism of a graph is a map from the vertex set to
itself which carries edges to edges. The action on nonedges is
not specified; a nonedge may map to a nonedge, or to an edge,
or collapse to a single vertex.
The endomorphisms of a graph form a transformation monoid.
Moreover, as long as the graph has at least one edge, its
endomorphism monoid is not synchronizing, since that edge
cannot be collapsed by any endomorphism.
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Weakly perfect graphs

The clique number is the number of vertices in the largest
complete subgraph, while the chromatic number is the number
of colours required to colour the vertices so that adjacent
vertices get different colours.

Clearly the clique number does not exceed the chromatic
number, since vertices of a complete subgraph require different
colours. The graph is called weakly perfect if these numbers
are equal.
If a graph is weakly perfect, then it admits an endomorphism
carrying each colour class in a minimal colouring to a vertex in
a maximal clique.
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Synchronization and endomorphisms

A graph is trivial if it is complete (all possible edges) or null (no
edges at all).

Now we have a pleasant surprise:

Theorem
A transformation monoid M is non-synchronizing if and only if there
is a non-trivial graph Γ on the domain such that M is contained in the
endomorphism monoid of Γ. Moreover, we can assume that Γ is
weakly perfect.
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Sketch proof
Since endomorphisms cannot collapse edges, it is clear that the
endomorphism monoid of a non-trivial graph must be
non-synchronizing.

For the converse, let M be a transformation monoid on Ω. We
define a graph Gr(M) as follows: the vertex set is Ω; there is an
edge joining s and t if and only if there is no element m ∈ M
with sm = tm. Now
I Gr(M) is non-trivial if and only if M is non-synchronizing;
I M ≤ End(Gr(M));
I Gr(M) has clique number equal to chromatic number.

The first point is clear; I will outline the second. If it fails, then
some element m ∈ M maps an edge {s, t} to either a single
vertex or a non-edge. The first case contradicts the definition;
in the second case, there is m′ ∈ M with (sm)m′ = (tm)m′, so
mm′ maps s and t to the same place.
For the last point, take an element m ∈ M of minimal rank; then
m is a colouring of the graph and its image is a clique.
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Does this help?

We seem to have replaced an easy problem (deciding whether
an automaton is synchronizing) by a much harder problem
(deciding whether the graph has clique number equal to
chromatic number).

However, the advantage is that we can potentially show that
whole classes of automata are synchronizing, or
non-synchronizing.
In our introductory example, one of the basic transitions of the
automaton was a permutation (generating a cyclic group of
order 4), while the other was not. We now turn to automata
with the property that all but one of their transitions are
permutations.
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Groups

A permutation group is a transformation monoid in which
every element is a bijection. Permutation groups form the
oldest part of group theory, going back to the work of Galois or
earlier.

Here are some basic definitions related to permutation groups.
If you have seen these before, my definitions may look a little
different, but you should be able to see that they are equivalent.
If you haven’t seen them, then you can take these as the
definitions.
Let Ω be a set. I will call a structure on Ω trivial if it is invariant
under the symmetric group, the group of all permutations of Ω.
Many important permutation group properties can be defined
saying that a permutation group G on Ω (a subgroup of
Sym(Ω)) has property P if it preserves no non-trivial structure
of type X on Ω.



Groups

A permutation group is a transformation monoid in which
every element is a bijection. Permutation groups form the
oldest part of group theory, going back to the work of Galois or
earlier.
Here are some basic definitions related to permutation groups.
If you have seen these before, my definitions may look a little
different, but you should be able to see that they are equivalent.
If you haven’t seen them, then you can take these as the
definitions.

Let Ω be a set. I will call a structure on Ω trivial if it is invariant
under the symmetric group, the group of all permutations of Ω.
Many important permutation group properties can be defined
saying that a permutation group G on Ω (a subgroup of
Sym(Ω)) has property P if it preserves no non-trivial structure
of type X on Ω.



Groups

A permutation group is a transformation monoid in which
every element is a bijection. Permutation groups form the
oldest part of group theory, going back to the work of Galois or
earlier.
Here are some basic definitions related to permutation groups.
If you have seen these before, my definitions may look a little
different, but you should be able to see that they are equivalent.
If you haven’t seen them, then you can take these as the
definitions.
Let Ω be a set. I will call a structure on Ω trivial if it is invariant
under the symmetric group, the group of all permutations of Ω.
Many important permutation group properties can be defined
saying that a permutation group G on Ω (a subgroup of
Sym(Ω)) has property P if it preserves no non-trivial structure
of type X on Ω.



Permutation group properties

I A permutation group G on Ω is transitive if it preserves no
non-trivial subset of Ω. (The trivial subsets are the whole
of Ω and the empty set.)

I A permutation group G on Ω is primitive if it is transitive
and preserves no non-trivial partition of Ω. (The trivial
partitions are the partition into singletons and the partition
with a single part Ω.)

I A permutation group G on Ω is 2-homogeneous if it
preserves no non-trivial graph on Ω. (The trivial graphs
are the complete and null graphs.)

Now we can add one further property:
I A permutation group G on Ω is synchronizing if it

preserves no no-trivial weakly perfect graph on Ω.
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Note on terminology

A permutation group cannot be synchronizing as a
transformation monoid (unless the domain has just one point).
So we hijack the word for a different use, as described on the
preceding slide.

Theorem
The permutation group G on Ω is synchronizing if and only if, for
every non-permutation f of Ω, the transformation monoid 〈G, f 〉
generated by G and f is synchronizing.
Sketch proof: If G preserves a non-trivial graph with clique
number equal to chromatic number, then this graph has an
endomorphism f which is not an automorphism; so 〈G, f 〉
preserves the graph, and is not synchronizing.
Conversely, if there exists f such that 〈G, f 〉 is not
synchronizing, then this monoid is contained in End(Γ), where
Γ is a non-trivial graph with clique number equal to chromatic
number; clearly G ≤ Aut(Γ).
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Which permutation groups are synchronizing?

A long-running project aims to answer this question. Here is a
summary of what we know.

I A synchronizing group is transitive. For if G preserves a
non-trivial subset ∆ of Ω, then the complete graph on ∆ is
a non-trivial weakly perfect G-invariant graph.

I A synchronizing group is primitive. For if G is transitive
and preserves a non-trivial partition P of Ω, then all parts
of P have the same size, and the disjoint union of complete
graphs on the parts of P is G-invariant and weakly perfect.
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The O’Nan–Scott Theorem

The structure of finite primitive permutation groups is given by
this theorem, which was proved independently by Michael
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Wreath product, affine and almost simple groups

A permutation group G is of wreath product type if it preserves
a Hamming graph (whose vertices are words of fixed length
over a fixed alphabet, two vertices joined if the words differ in
one coordinate). Hamming graphs are weakly perfect, so these
groups are not synchronizing.

A permutation group G on Ω is affine if Ω can be identified
with a vector space over a prime field F so that elements of G
have the form v 7→ vM + c for some matrix M and vector c.
Affine groups may or may not be synchronizing.
A group G is almost simple if T ≤ G ≤ Aut(T) for some
non-abelian finite simple group G. Note that the action as a
permutation group is not specified, and is completely arbitrary.
Almost simple groups may or may not be synchronizing.



Wreath product, affine and almost simple groups

A permutation group G is of wreath product type if it preserves
a Hamming graph (whose vertices are words of fixed length
over a fixed alphabet, two vertices joined if the words differ in
one coordinate). Hamming graphs are weakly perfect, so these
groups are not synchronizing.
A permutation group G on Ω is affine if Ω can be identified
with a vector space over a prime field F so that elements of G
have the form v 7→ vM + c for some matrix M and vector c.

Affine groups may or may not be synchronizing.
A group G is almost simple if T ≤ G ≤ Aut(T) for some
non-abelian finite simple group G. Note that the action as a
permutation group is not specified, and is completely arbitrary.
Almost simple groups may or may not be synchronizing.



Wreath product, affine and almost simple groups

A permutation group G is of wreath product type if it preserves
a Hamming graph (whose vertices are words of fixed length
over a fixed alphabet, two vertices joined if the words differ in
one coordinate). Hamming graphs are weakly perfect, so these
groups are not synchronizing.
A permutation group G on Ω is affine if Ω can be identified
with a vector space over a prime field F so that elements of G
have the form v 7→ vM + c for some matrix M and vector c.
Affine groups may or may not be synchronizing.

A group G is almost simple if T ≤ G ≤ Aut(T) for some
non-abelian finite simple group G. Note that the action as a
permutation group is not specified, and is completely arbitrary.
Almost simple groups may or may not be synchronizing.



Wreath product, affine and almost simple groups

A permutation group G is of wreath product type if it preserves
a Hamming graph (whose vertices are words of fixed length
over a fixed alphabet, two vertices joined if the words differ in
one coordinate). Hamming graphs are weakly perfect, so these
groups are not synchronizing.
A permutation group G on Ω is affine if Ω can be identified
with a vector space over a prime field F so that elements of G
have the form v 7→ vM + c for some matrix M and vector c.
Affine groups may or may not be synchronizing.
A group G is almost simple if T ≤ G ≤ Aut(T) for some
non-abelian finite simple group G. Note that the action as a
permutation group is not specified, and is completely arbitrary.

Almost simple groups may or may not be synchronizing.



Wreath product, affine and almost simple groups

A permutation group G is of wreath product type if it preserves
a Hamming graph (whose vertices are words of fixed length
over a fixed alphabet, two vertices joined if the words differ in
one coordinate). Hamming graphs are weakly perfect, so these
groups are not synchronizing.
A permutation group G on Ω is affine if Ω can be identified
with a vector space over a prime field F so that elements of G
have the form v 7→ vM + c for some matrix M and vector c.
Affine groups may or may not be synchronizing.
A group G is almost simple if T ≤ G ≤ Aut(T) for some
non-abelian finite simple group G. Note that the action as a
permutation group is not specified, and is completely arbitrary.
Almost simple groups may or may not be synchronizing.



Diagonal groups

I will not describe the groups of simple diagonal type in detail.
I will just say that diagonal groups in much greater generality
are studied in a recent paper with Rosemary Bailey, Cheryl
Praeger and Csaba Schneider.

The diagonal group D(G, m) of dimension m over a group G is
a permutation group of degree |G|m containing Gm as a regular
subgroup.
If G is a non-abelian simple group, we have a simple diagonal
group; these are the groups in the O’Nan–Scott theorem.
However, the construction of these groups does not require G
to be simple, or even finite.
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The diagonal graph

Diagonal groups with dimension at least 2 preserve a graph
known as a diagonal graph.

The most succinct description of them is as follows. Let m be an
integer at least 2, and G a group, finite or infinite. The diagonal
graph ΓD(G, m) is the Cayley graph Cay(Gm,

⋃
Si) with

I Si = {(1, 1, . . . , g, . . . , 1) | g 6= 1} (non-identity element in
the ith place) for 1 ≤ i ≤ m;

I S0 = {(g, g, . . . , g) | g 6= 1} (the diagonal of the direct
product).

Despite appearances, there is complete symmetry between the
sets S0, S1, . . . , Sm.
When m = 2, this is the strongly regular Latin square graph
associated with the Cayley table of G. When |G| = 2, it is the
distance-transitive folded cube. We think these graphs could be
of wider interest to algebraic graph theorists.
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Why these groups are non-synchronzing

Based on the proof in 2009 of the Hall–Paige conjecture, it is
possible to show that a diagonal graph over a finite simple
group has clique number equal to chromatic number. Hence
permutation groups of simple diagonal type with dimension at
least 2 are non-synchronizing.

In fact, except for a few small cases, ΓD(G, m) has clique
number |G| and, if m or |G| is odd or G has non-cyclic Sylow
2-subgroups, it also has chromatic number |G|. We conjecture
that in the remaining case the chromatic number is |G|+ 2.

There remain the case m = 1. These contain the group G×G,
acting on G by left and right multiplication, together with
inversion and automorphisms of G. A recent result of John
Bamberg, Michael Giudici, Jesse Lansdown and Gordon Royle
shows that these groups may or may not be synchronizing.
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