
Complete mappings of semigroups

Peter J. Cameron, University of St Andrews
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Introduction

As you will see from the title slide, this talk has added one
co-author.

Also, the conjecture in the abstract has become a theorem.
The two events are not unconnected, as you will see. So
welcome to the team, Wolfram!
Everything in this talk will be finite.
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Complete mappings

Let (A, ◦) be a magma (a set with a binary operation).

A complete mapping on A is a bijection φ : A→ A with the
property that the map ψ : A→ A defined by

ψ(a) = a ◦ φ(a)

is also a bijection. The mapping ψ is called the orthomorphism
associated with φ.
The very general question, which I am not going to address, is:

Question
Which magmas have complete mappings?
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Groups

The general question, for the case of groups, was studied by
Marshall Hall and Lowell Paige in the 1950s.

The cyclic group G of order 4 has no complete mapping. For
suppose that it does. Then

∑
g∈G

g + ∑
g∈G

φ(g) = ∑
g∈G

ψ(g).

Each of the three sums is the sum of all elements of G, and is
equal to the unique involution t in G. But then t + t = t, which
is false.
By similar reasoning, and using Burnside’s transfer theorem,
they proved

Theorem
Let G be a group of even order whose Sylow 2-subgroups are cyclic.
Then G has no complete mapping.
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The Hall–Paige conjecture
Hall and Paige conjectured the converse:

Conjecture

If either |G| is odd or G has non-cyclic Sylow 2-subgroups, then G
has a complete mapping.
They proved this for some special groups such as symmetric
and alternating groups.

In 2009, three things happened:
I Stuart Wilcox reduced the conjecture to the case of finite

simple groups G, and dealt with all groups of Lie type
except the Tits group 2F4(2)′;

I Tony Evans dealt with this group and 25 of the 26 sporadic
simple groups;

I John Bray handled the remaining sporadic group (the
Janko group J4).

So the conjecture was proved, though Bray’s proof was not
published until 2020.
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An application

I will take a small detour here to talk about synchronization,
where this topic connects with semigroup theory in a different
way.

We consider finite-state automata, very simple machines with a
finite set Ω of internal states, which read symbols from an
alphabet A and change their state to a function of the current
state and the symbol read.
An automaton can read a word in the alphabet and perform a
sequence of state changes. It is said to be synchronizing if there
is a word (called a reset word) with the property that reading
this word brings the automaton to a known state, independent
of its starting state.
There is an example on the next slide.
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It can be verified that BRRRBRRRB is a reset word (and indeed
that it is the shortest possible reset word for this automaton).

Problem
Show that, if an n-state automaton is synchronizing, it has a reset
word of length at most (n− 1)2.
This is the Černý conjecture, posed in the 1960s and still open.
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Automata to transformation semigroups

In a finite automaton with set of states Ω, each letter of the
alphabet corresponds to a map from Ω to itself. Reading a
word corresponds to the composition of the corresponding
maps. Of course the empty word corresponds to the identity
transformation.

So an automaton gives rise to a transformation monoid on Ω
with a distinguished set of generators (corresponding to the
letters in the alphabet).
The automaton is synchronizing if and only if the monoid
contains an element of rank 1. So we call a transformation
monoid synchronizing if it contains a rank 1 transformation.
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Synchronizing permutation groups

A permutation group G on Ω cannot be synchronizing
(according to the above definition) unless |Ω| = 1. So we
re-purpose the term as follows.

The group G synchronizes the non-permutation t if the monoid
〈G, t〉 is synchronizing. We also say that the group G is
synchronizing if it synchronizes every non-permutation on Ω.

Question
Which permutation groups are synchronizing?
I do not intend to give a course on permutation groups here,
but in the next slide I will summarise our current knowledge.
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Synchronizing permutation groups must be primitive (i.e.,
preserve no non-trivial equivalence relation).

The primitive groups are classified by the O’Nan–Scott
Theorem, which divides them into four types: wreath product,
affine, diagonal, or simple.
Wreath product groups are always non-synchronizing. Affine
and almost simple groups may or may not be synchronizing,
and we know exactly what happens for degree up to several
hundred.
The truth of the Hall–Paige conjecture shows:

Theorem
Diagonal groups with more than two factors in the socle are
non-synchronizing.
For two-factor socles, the groups may or may not be
synchronizing.
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Further developments

The proof of the Hall–Paige Conjecture used the Classification
of Finite Simple Groups.

Last year, Sean Eberhard, Freddie Manners and Rudi Mrazović
posted on the arXiv a paper in which they used analytic
number theory to obtain an estimate for the number of
complete mappings of a group (this includes an existence proof
for sufficiently large groups).
This year, Alp Müyesser and Alexey Pokrovskiy posted on the
arXiv a proof of a generalization of the Hall–Paige conjecture
for large groups (concerning the existence of complete
mappings on large subsets of the group), using methods of
probabilistic combinatorics.
But my goal is to speak about semigroups . . .



Further developments

The proof of the Hall–Paige Conjecture used the Classification
of Finite Simple Groups.
Last year, Sean Eberhard, Freddie Manners and Rudi Mrazović
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A reduction

Let S be a finite semigroup.

Recall Green’s relation J , an equivalence relation on S defined
by a J b if S1aS1 = S1bS1, where S1 denotes S with an identity
adjoined if necessary.
Now let Ja denote the J -class of a, and add a new element 0 to
Ja, with a multiplication defined on this set J0

a by

u× v =

{
uv if u, v, uv ∈ Ja,
0 otherwise.

Theorem
S has a complete mapping if and only if J0

a has a complete mapping for
all a ∈ S.
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Rees 0-matrix semigroups
Let G be a group and 0 an element not in G. Let I and Λ be
finite index sets, and let P be a I×Λ matrix with entries from
G∪ {0}. The Rees 0-matrix semigroup with sandwich matrix P
is the set

M0[G, I, Λ; P] = (I×G×Λ) ∪ {0}

with 0 a zero element and multiplication of other elements
given by

(i, g, λ)(j, h, µ) =

{
(i, gpj,λh, µ) if pj,λ 6= 0,
0 otherwise.

Theorem (Rees)

Let S be a semigroup and a ∈ S. Then either J0
a satisfies xy = 0 for all

x, y, or J0
a is a Rees 0-matrix semigroup.

This reduces our problem to dealing with Rees 0-matrix
semigroups.
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Interlude

Recently, one of the organisers of this special session told me
that he felt I now qualified as a paid-up semigroup theorist.

Until a little over two years ago, when I started the I am talking
about here, I knew what a Rees 0-matrix semigroup is, but I did
not know the theorem on the preceding slide.
This seems to me to be such an important theorem that I don’t
see how I could qualify as a semigroup theorist without
knowing it.
I don’t know how other semigroup theorists feel about this. I
have always felt that Sylow’s Theorem is the analogous test for
someone to be a group theorist.
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have always felt that Sylow’s Theorem is the analogous test for
someone to be a group theorist.



Rees matrix semigroups

A Rees matrix semigroupM[I, G, Λ; P] is a Rees 0-matrix
semigroup without the 0 – thus every element of P belongs to
G.

For these we have a definitive result. We say that P is
normalized if every element in the first row or column is the
identity of G; we may assume this without loss of generality.

Theorem
Assume that P is normalized. ThenM[I, G, Λ; P] has a complete
mapping if and only if one of the following conditions holds:

I |G| is odd;
I G has non-cyclic Sylow 2-subgroups;
I |I| · |Λ| is even;
I some element of P has even order.

Note that the first two conditions are necessary and sufficient
for G to have a complete mapping.
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Brief proof sketch

For the forward direction: general arguments about the
connection between complete mappings of a semigroup and of
its group of units give the result if one of the first two
conditions hold.

For the third we give a direct construction.
For the fourth, we have to partition the sandwich matrix into
pieces and handle them separately; in one case, the pieces are
not rectangular, so we have to find a complete mapping in a
“partial semigroup”.
For the converse, we may suppose that G has no complete
mapping, so that its Sylow 2-subgroups are cyclic; an easy
reduction allows us to assume that G is a cyclic 2-group. Then
arguments similar to the one I gave earlier for C4 apply.
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Rees 0-matrix semigroups

It remains to extend the result to Rees 0-matrix semigroups. We
have partial results in the case where the group G has a
complete mapping.

Here is what we think holds. The pattern of a sandwich matrix
is the matrix obtained by replacing the non-zero elements by 1;
it can be regarded as a sandwich matrix over the trivial group.
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Conjecture

Let Q be a zero-one I×Λ matrix. Then the following are equivalent:

I For any group G which has a complete mapping, and any matrix
P over G∪ {0} with pattern Q,M0[G, I, Λ; P] has a complete
mapping.

I M0[1, I, Λ; Q] has a complete mapping.
I For any r rows of Q, there are at least r|Λ|/|I| columns with

non-zero entries in some of the chosen rows.
I For any s columns of Q, there are at least s|I|/|Λ| rows with

non-zero emtries in some of the chosen columns.

We have shown that

(a)⇔ (b)⇒ (c)⇔ (d),

and that if |I| = |Λ| then all four are equivalent.
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Matchings

Those of you who know Philip Hall’s Marriage Theorem will
probably see that conditions (c) and (d) in the above are
connected with this theorem.

In particular, if |I| = |Λ| then Hall’s Theorem asserts that there
is a matching from the rows to the columns of the sandwich
matrix so that all elements in the positions picked out are equal
to 1. By rearranging the columns, we may assume that these 1s
are on the diagonal, and then it is enough to prove the result in
the case where P is the identity matrix, since adding more 1s
cannot hurt us.
So probably the thing we are missing to complete the proof is a
combinatorial argument . . .
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Further results

We have some apparently unrelated general results. For
example, a short and ingenious argument involving simple
manipulations shows:

Theorem
A semigroup which has a complete mapping is regular.
But we have not been able to use this or related results to help
answer our question for Rees 0-matrix semigroups, since these
are regular . . .



. . . for your attention.


