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I thank Dr Vijayalakshmi for the invitation to speak to you
today.

I am not an expert on machine learning. But there are strong
links between machine learning and networks; and I am going
to tell you about networks, and a new technique (whose roots
go back to Kirchhoff in the nineteenth century) for studying
them, as well as some of their applications in other branches of
mathematics and statistics, and elsewhere.
From some points of view, a network is the same as a graph,
although the different names indicate different emphasis in
their study.
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What is a graph?

In its simplest form, a graph has a set of vertices, some pairs of
which are joined by edges:
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More elaborate graphs could have loops joining vertices to
themselves; multiple edges joining the same pairs of vertices,
or directed edges like one-way streets:
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We can also add further structure such as weights or colours to
vertices or edges.
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What is a network?

A network is (more or less) the same thing as a graph. The
different name indicates that we are thinking about them
differently. I will discuss some of the features we commonly
meet in networks in the next few slides.

I Networks typically come from some application area.
Examples include gene networks, where the protein produced
by one gene can enhance or inhibit the action of another gene.
For example, a simple switch controlled by a single gene on the
Y-chromosome determines the sex of a human embryo, but it
works by triggering a cascade of gene actions which produce
different outcomes.
Another example is in ecology, where the vertices may be
species inhabiting the same environment; two species can be in
various relations such as predator/prey, symbiotic, parasitic,
. . .
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I Networks are often very large graphs.

Examples include the internet (nodes are computing devices),
the World Wide Web (nodes are web pages), social media, and
so on.
I Networks may have some associated dynamics.

This may refer to the network itself (e.g. the Web is constantly
growing and changing; what processes are involved?), or to the
flow of some commodity such as traffic or information in the
network.
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I Networks may have some additional structure.

For example, we saw in the ecological network example that
there are several different relations between species. If the
relation is predator/prey, then the edge should be directed (say
from predator to prey).
Similarly the effect of one gene on another can be quite
complicated.
But I will give another example, which involves giving some
extra structure to the nodes rather than the edges, namely
network coding.
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Information flow

In the latest supercomputers, each node has processing power,
but it cannot export the results of its computations because
sending information is much slower than computing it.

So if the computer does a simulation, most of the data it
produces is WORN (write once, read never).
The usual way to deal with this is to decide which aspects of
the data are really important and just export these. But people
also look at ways of speeding up data transmission. Network
coding is one of these.
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Network coding

Network coding can be illustrated with a very simple example,
the butterfly network.
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Nodes A and B possess some information in the form of
bitstrings a and b. The task is for A to send a to D, and B to send
b to C. If it were physical commodities rather than information,
it would take two time units to send each bit because of the
bottleneck at E.
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But if we give each node some small amount of processing
power, the information can be sent through the network in just
one time unit.
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Node A transmits its information a to both C and E, and node B
sends b to D and E. Now E adds its two inputs to give a + b,
which it sends on to C and D. Now C possesses a and a + b, and
can find b by subtraction; similarly D can find a.
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What makes a good network?
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Suppose you wanted to build a network connecting ten nodes.
You could afford to construct fifteen edges. You want the
network to be well connected and resilient. Which one of the
two shown above would you choose?
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I think almost everyone would choose the first network. The
second has an obvious bottleneck, a link through which all
traffic from top to bottom must pass. This can be quantified in
various ways:

I A spanning tree in a graph is a collection of edges forming
a connected subgraph with no cycles (a “minimal
connector”). The more spanning trees, the better
connected. The first graph has 2000 spanning trees, the
second 576.

I Regarding the graph as an electrical network with each
edge being a 1-ohm resistor, we can measure the effective
resistance between two nodes by connecting a battery and
measuring the current that flows. We can sum these over
all pairs of vertices. The lower sum the better. For the first
graph, the sum is 33; for the second, it is 206/3 = 68.66 . . . ,
more than twice as large.
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I In a good network there will be many edges out of any set
of nodes. The isoperimetric number is the smallest ratio of
number of edges from S to its complement to number of
vertices in S, for |S| ≤ n/2. The larger, the better.For the
first graph it is 1, and for the second, only 0.2.

The intuition is that, if the isoperimetric number is large, you
will not get trapped in a small set of vertices (for example if
you walk randomly on the graph).
The isoperimetric number is related to other important
properties of a good network such as expansion (where
Ramanujan graphs are optimal) and rapid convergence of the
random walk on the graph.
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All three measures are related to the Laplacian matrix of the
network, which I will define shortly. (Note to topologists:
networks can be used as discrete approximations to manifolds;
the Laplacian matrix is an approximation to the classical
Laplacian operator on the manifold.)

The Laplacian matrix and its eigenvalues carry important
information about the connectedness of the graph
We will also see that the three measures suggested correspond
exactly to three popular optimality criteria in experimental
design in statistics.
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Random walks

The simplest random walk on a graph (which we assume to be
connected) is a discrete process which starts at a vertex of the
graph. This vertex may be given in advance or selected from
some initial probability distribution.

At each time step, the walker moves to a neighbour of the
current vertex, all neighbours chosen to be equally likely.
As the number of steps increases, the probability distribution of
the position tends to a limiting distribution.
In a more general form, there are positive weights on the edges,
and the next step in the random walk is chosen with
probability proportional to the weight on the edge.
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An example: permutation groups

Here is an example chosen from my own field, permutation
groups. We are given a group G which acts on a set X in some
way. The set will be partitioned into orbits of the group, an
orbit consisting of all points which can be reached from a given
one by applying elements of the group.

There may be a large number of orbits, of differing sizes. How
do we choose a random orbit (with each orbit, large or small,
equally likely to be chosen)?
This was answered by Mark Jerrum, as follows. Form a
bipartite graph with G∪X as vertex set. Put an edge from
g ∈ G to x ∈ X if the permutation g fixes the element x. Then
the limiting distribution of the random walk of even length
starting in X is uniform on orbits.
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Another example: Latin squares

A Latin square of order n is an n× n array with entries taken
from an alphabet of size n (whose elements may be letters,
numbers, colours, etc.) so that each letter occurs once in each
row and once in each column.

Latin squares are used in experimental design in statistics, in
cryptography, and in pure mathematics where they occur as
“multiplication tables” of algebraic structures (groups,
quasigroups, etc.)
Jacobson and Mathews gave a method for choosing a random
Latin square, based in an ingenious way on a set a bit larger
than the set of all Latin squares of given order.
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Rate of convergence

For many reasons, theoretical and practical, it is important to
know how many steps we need to take so that the distribution
is within a given distance of its limit. If this takes an
exponential number of steps, the algorithm may not be of much
use.

This is particularly important in the Jacobson–Mathews
random walk for Latin squares; for cryptographic applications
we may need to know that the square really is random!
We will see later the crucial parameter for estimating the rate of
convergence of the random walk.
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How do we find good networks?

There are results which say that a large random network will
have good properties with high probability. But this is maybe
not so useful, since designing and analysing a random network
may be far from straightforward.

There are two places we might look.
I Naturally occurring networks such has gene networks,

which have been refined by the pressure of millions of
years of evolution, are likely to have good properties. But
of course, the “selfish gene” might have a view of what
makes a good network which is rather different from ours.
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I The other place we can look is algebra, specifically group
theory. Groups were invented to measure symmetry, but
they can be used to construct networks which have good
properties, and also provide techniques to analyse and
quantify these properties, based on the symmetry of the
networks.

The basic construction goes back to Cayley in the 19th century;
the objects are known as Cayley graphs. Now representation
theory, which grew out of group theory, allows us to estimate
the eigenvalues of large networks, which (as we will see) gives
strong information about their properties.
Before looking at this, I will describe one more network which
has captured the interest of mathematicians.
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Erdős number

What about the network in which the nodes are
mathematicians, two nodes being joined by an edge if the two
mathematicians have published a joint paper.

The distance in this network is called collaboration distance,
and a mathematician’s distance from Paul Erdős is her Erdős
number.
The MathSciNet website includes a collaboration distance
calculator.
Jerry Grossman at Oakland University in the USA keeps the
data for this. There are roughly 400000 authors of mathematics
papers on MathSciNet (so the network has 400000 nodes). Of
these, about 268000 lie in a single large connected component;
84000 are isolated nodes (mathematicians who have never
written a joint paper), amd the remainder, about 50000, lie in
small components with between 2 and 23 vertices. (These
figures date from 2004 so the picture is probably different now.)
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number.
The MathSciNet website includes a collaboration distance
calculator.

Jerry Grossman at Oakland University in the USA keeps the
data for this. There are roughly 400000 authors of mathematics
papers on MathSciNet (so the network has 400000 nodes). Of
these, about 268000 lie in a single large connected component;
84000 are isolated nodes (mathematicians who have never
written a joint paper), amd the remainder, about 50000, lie in
small components with between 2 and 23 vertices. (These
figures date from 2004 so the picture is probably different now.)
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number.
The MathSciNet website includes a collaboration distance
calculator.
Jerry Grossman at Oakland University in the USA keeps the
data for this. There are roughly 400000 authors of mathematics
papers on MathSciNet (so the network has 400000 nodes). Of
these, about 268000 lie in a single large connected component;
84000 are isolated nodes (mathematicians who have never
written a joint paper), amd the remainder, about 50000, lie in
small components with between 2 and 23 vertices. (These
figures date from 2004 so the picture is probably different now.)



Variants

G. H. Hardy and J. E. Littlewood had a very successful
collaboration, and wrote over 100 joint papers, many of them of
groundbreaking importance in a number of areas of
mathematics.

As a result, some people have suggested that the distance
between Hardy and Littlewood should be smaller, say 1/100.
Now Hardy had 8 joint papers with Srinivasa Ramanujan,
whereas Littlewood did not have any. So what should the
distance from Littlewood to Ramanujan be? Should it be
smaller because of their common co-author?
I am going to propose a possible answer to this question in the
rest of this lecture.
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Resistance distance
Take a network, and suppose (to start) that the vertices are
terminals in an electrical network, and each edge is a 1-ohm
resistor. As we saw earlier, we can measure the effective
resistance between any pair of terminals by connecting a
battery to those terminals and measuring the current that
flows; or we can calculate the effective resistance using
Kirchhoff’s and Ohm’s Laws.

More generally, we could connect arbitrary resistors between
the terminals, and measure effective resistance betweem each
pair of terminals.
Something remarkable happens:

Theorem
Effective resistance is a metric on the network.
This means that it is positive, symmetric (doesn’t depend on
the order of the terminals), and satisfies the triangle inequality:

R(i, j) + R(j, k) ≥ R(i, k).
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I will not prove this theorem in detail. It depends on a fact
which is obvious to any physicist or electrical engineer, but is
not trivial for a mathematician to prove:

If we connect a battery between two terminals of a network,
the potential at any other terminal will be between the po-
tentials of the two terminals connected to the battery.

The other fact needed in the proof is that the equations for the
network (Kirchhoff’s and Ohm’s laws) are linear, so if we have
two solutions, we can superimpose them to get another
solution by adding the currents.
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Conductance

It is convenient to use conductance instead of resistance for the
network elements. Conductance is just the reciprocal of
resistance; its units are mhos. By the law for parallel
connection, if several edges connect the same pair of terminals,
we can replace them by a single edge by adding the
conductances.

This agrees with the earlier intuition that, if Hardy and
Littlewood wrote 100 joint papers, then the conductance of the
edge joining them should be 100.
Another advantage is that, if two nodes are not joined by an
edge, then the resistance between them should be infinite, in
other words, the conductance should be 0.
Then resistance distance would be a very good measure of
collaboration distance in the collaboration network.
As far as I know, nobody has ever computed resistance
distances in this network.
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Laplacian matrix

Here is a method for computing resistance distance. It is
essentially due to Kirchhoff in the 19th century.

We are given a network with n nodes; let sij be the conductance
of the direct connection between nodes i and j. So sij = 0 if
there is no edge between these nodes.
Form the Laplacian matrix L of the network, an n× n matrix
with rows and columns indexed by network nodes, as follows.
For i 6= j, the (i, j) entry is −sij, while the (i, i) diagonal entry is
the sum of all conductances between i and other vertices.
This matrix has all row and column sums zero; such a matrix
has the property that all order n− 1 cofactors (determinants
obtained by deleting the ith row and jth column, with a change
of sign if i + j is odd) are equal. This common value A counts
the spanning trees in the network, if all conductances are 0 or 1.
In general, it counts spanning trees by weight, where the
weight of a tree is the product of the conductances of its edges.
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Connected components and random walks

Since the row and column sumns of L are all zero, we know
that L is singular; indeed, the all-1 vector is an eigenvector with
eigenvalue 0 (called the trivial eigenvalue and eigenvector).

It can be shown that the multiplicity of 0 as an eigenvalue is
equal to the number of connected components of the graph.
Indeed, the size of the smallest non-trivial eigenvalue is an
important measure of the connectivity of the graph.
This shows up in various ways. For a regular graph of valency
k, the smallest non-trivial eigenvalue is at most k− 2

√
k− 1;

equality implies that the graph is a Ramanujan graph. In
general, a large value of the smallest eigenvalue is associated
with a large isoperimetric number, and with rapid convergence
of the random walk on the graph.
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Furthermore, if we delete the ith and jth row and the ith and jth
column, then the value is not independent of i and j; it counts
spanning 2-forests (forests with two connected components) in
which the nodes i and j lie in different components. If this value
is Bij, then the effective resistance between i and j is Bij/A.
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For example, suppose we have a triangle with conductances x,
y and z. Then the effective resistance between the ends of the
edge with conductance x is (y + z)/(xy + yz + zx).
I would be very interested in a calculation of the resistance
distances in the mathematicians’ collaboration graph!
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Statistics

I spoke earlier about three ways of deciding which network is
“good”, according to three different criteria. These correspond
precisely to three optimality conditions in experimental design
in statistics, which I now briefly mention.

The set-up is very general: the treatments might be fertilizer
regimes for crops, and the experimental units plots of land; the
treatments may be drugs, and the experimental units patients;
and so on.
The situation is that we have a number n of “treatments” to
compare, and a number of “experimental units” to apply them
to. What is the best way to do this? For the most accurate
experimental result, we want to minimize the variances
between the estimators of treatment differences; but this is a
multidimensional problem, so we cannot minimize all
variances simultaneously!
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If all experimental units are exactly alike, then we simply apply
each treatment to the same number of experimental units (as
near as possible). But a more usual situation is that the
experimental units are grouped into blocks, so that units in a
block are alike but differ systematically from those in a
different block.

For example, in the fertilizer example, blocks might be different
farms or areas of the country; in the drug example, they might
be hospitals in which the tests are administered.
In this situation, we form the concurrence graph of the design,
where the vertices are the treatments, and we put an edge
between treatments i and j each time there is a block containing
both. So the graph can have multiple edges. It is important to
realise that the graph can be chosen by the experimenter as part
of the design, subject to constraints about the numbers and
sizes of blocks.
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Optimal designs

The effective resistance between i and j is proportional to the
variance of the estimator of the difference in effect between
these two treatments. So we want to keep these variances small.

I If we minimize the average resistance, the average
variance is minimized: such a design is called A-optimal
(A for “average”).

I If we minimize the largest variance, and hence the largest
resistance (this is roughly the same as maximizing the
isoperimetric number), the design is E-optimal (E for
“extreme”).

I Minimizing the volume of a confidence ellipsoid
containing the estimated values is equivalent to
maximizing the count of spanning trees by weight; such a
design is D-optimal (D for “determinant”).
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An example
Suppose that we have n treatments to compare, and 2n
experimental units divided into n blocks of size 2. What is the
best design?
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Biologists are told that every treatment should be compared
with a control, so would use the design on the left. Statisticians
are told that each treatment should be replicated equally often,
so would use the design on the right.
The cycle has n spanning trees, the design on the left just three,
so the cycle wins on the D-criterion. However, it can be shown
that the design on the left (the “queen bee design”) is
A-optimal if n ≥ 12 and E-optimal if n ≥ 7, a result which came
as a surprise to some statisticians.
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Graph isomorphism

Two graphs or networks are isomorphic if the vertices of the
first can be matched up with those of the second so that
corresponding pairs of vertices are either both joined or both
not joined (and if the edges are weighted, these edges should
have the same weight).

For example, these two graphs are isomorphic:
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The Graph Isomorphism Problem

Consider the following computational problem:
Given two graphs, decide whether or not they are isomor-
phic.

This is one of a very small group of natural problems which
belong to the complexity class NP (this means that we can
check whether a proposed isomorphism really works) but are
not known to be either in P or NP-complete.
It is easy to find negative tests. For example, if the graphs have
different numbers of vertices or of edges, or if the lists of vertex
degrees are different, then they cannot be isomorphic.
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One of the first serious attacks on this problem was the
Weisfeiler–Leman algorithm. It is based on a refinement of the
ideas above, refining the graph by adding purely combinatorial
labels to the vertices and edges to distinguish them. The end
result is an object known as a coherent configuration; if the two
coherent configurations are not isomorphic then the graphs are
not isomorphic.

The algorithm does not always succeed; but using these ideas,
László Babai has recently given a quasi-polynomial algorithm
for graph isomorphism (running in time exp(O((log n)c)) for
some c (here c = 1 would be polynomial-time).
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The RDT algorithm

The WL algorithm may take many steps to reach the coherent
configuration. Since it only explores the graph locally, the
number of steps is at least log d, where d is the diameter of the
graph.

Michael Kagan has proposed an alternative approach based on
resistance distance, as follows.
I Calculate the resistance distances between all pairs of

vertices.
I Now give each pair of vertices a link whose conductance is

the reciprocal of the effective distance between them.
I Repeat until the process stabilises.

This is currently being investigated. Because it is global, it
usually takes many fewer steps than the WL algorithm. We
think that the stable configurations are Jordan schemes, related
to coherent configurations as Jordan algebras are to associative
algebras.
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Jordan algebras

Pascual Jordan was an early pioneer in quantum mechanics, a
student of Max Born and colleague of Werner Heisenberg. He
proposed his algebras for their potential use in quantum
mechanics, and was involved in the
Jordan–von Neumann–Wigner theorem classifying the simple
ones (the analogue of Wedderburn’s theorem).

Rather than give you the axioms, I will simply describe an
important class of examples. Define a multiplication on the set
of n× n real symmetric matrices by the rule

A ◦ B = 1
2 (AB + BA).

The operation is commutative but not associative.
Jordan algebras are not much used in physics now but have
found a place in statistics and in algebraic combinatorics.
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. . . for your attention.


