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Graphs on groups?

As my title slide suggests, there are many people currently
working on this topic, in Iran, India, China, and various other
countries.

I will give a few results along the way. But my main purpose is
to address the question: Why study graphs on groups? There
are several reasons:
I We learn new results about groups.
I Using graphs we can characterise some important classes

of groups.
I We might find some beautiful graphs in the process.
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What kinds of graphs?

I am not talking about Cayley graphs. My graphs will be
defined simply in terms of the group structure, and so will be
invariant under all automorphisms of the group.

Some examples of the types of graph to be considered are:
I The commuting graph: x ∼ y if xy = yx.
I The generating graph: x ∼ y if 〈x, y〉 = G.
I The power graph: x ∼ y if one of x and y is a power of the

other.
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The commuting graph

The first appearance of the commuting graph was in a paper of
Brauer and Fowler in 1955. Curiously they did not use the
word “graph” anywhere in the paper; but central to their
argument is the graph distance in this graph on a finite simple
group, with the identity removed (since it commutes with
everything).

This very important paper is arguably the first step on the road
to the Classification of Finite Simple Groups (though that took
50 years to complete). An involution is an element of order 2;
its centraliser is the set of elements which commute with it.
Brauer and Fowler proved:

Theorem
The order of a finite simple group of even order is bounded by a
function of the order of the centraliser of an involution; so there are
only finitely many simple groups having a given involution
centraliser.
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Remarks

At the time, it was not known that a finite simple group must
have even order; the Feit–Thompson Theorem came only eight
years later.

Subsequently, characterising simple groups with a given
involution centraliser was a key tool in the proof of CFSG.
The centraliser of an element of a group is the set of its
neighbours in the commuting graph. The argument of Brauer
and Fowler went, in brief, like this. They give an absolute
bound for the diameter of this graph. Then using the fact that
involutions have finite valency, they can convert this into a
bound for the number of vertices, using graph-theoretic
arguments.
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Other groups

In general, to study the diameter of commuting graphs, we
should remove the centre of the group, the set of elements
which commute with everything in the group, since if these
remain then any two vertices are joined by a path of length 2
via the centre.

On the basis of this and other evidence, Iranmanesh and
Jafarzadeh conjectured that there is an absolute bound for the
diameter of the commuting graph of any finite group (with the
centre removed). Their conjecture was proved for groups with
trivial centre by Morgan and Parker; but Giudici and Parker
showed that it is false for general groups, where the diameter
can be arbitrarily large.
It may be worth looking at the Giudici–Parker graphs to see if
they have interesting graph-theoretic properties.
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Landau’s Theorem

I would like to mention another example where graphs are
used to prove a result about groups.

In 1903, Landau proved:

Theorem
The order of a group G is bounded by a function of the number k(G)
of conjugacy classes.
The proof goes like this. The conjugacy classes are orbits of the
group acting on itself by conjugation; the stabiliser of a point is
its centraliser. So the Orbit-Stabiliser Theorem shows that
|CG(x)| = |G|/|xG|, where CG(x) is the centraliser of x and xG

the conjugacy class containing x.
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Since the conjugacy classes partition G, we have

|G| =
k

∑
i=1
|G|/|CG(xi)|,

where xi runs over a set of conjugacy class representatives.
Putting ni = |CG(xi)| and dividing by G, we have

k

∑
i=1

1/ni = 1.

For given k, this equation has only finitely many solutions in
positive integers. (This is an exercise!)

Now |G| = |CG(1)| is the largest value of ni to occur in a
solution arising from a group G. So there are only finitely many
possible groups.
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Estimates

To a combinatorialist, this theorem demands good upper
bounds on the function involved. Equivalently, a lower bound
on the least number f (n) of conjugacy classes of a group of
order n.

The first into the fray were Erdős and Rényi, who showed that
f (n) ≥ log log n (logarithms to base 2). This was improved by
Laci Pyber to ε log n/(log log n)8 by Pyber; the exponent 8 was
reduced to 7 by Keller, and to 3 + ε by Baumeister, Maróti and
Tong-Viet. It is conjectured that a bound of the form
f (n) ≥ C log n holds for some constant C. In the other direction,
f (n) ≤ (log n)3.
I am going to show a different development of Landau’s
theorem.
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The solvable conjugacy class graph

The solvable conjugacy class graph of the group G is defined as
follows: the vertices are the conjugacy classes; two classes xG

and yG are joined if there exist x′ ∈ xG and y′ ∈ yG such that
〈x′, y′〉 is a solvable group.

Thus Landau showed that |G| is bounded by a function of the
number of vertices of this graph. With Parthajit Bhowal, Rajat
Kanti Nath and Benjamin Sambale, I showed:

Theorem
For any finite group G, |G| is bounded by a founction of the clique
size of the solvable conjugacy class graph.
The proof uses the Classification of Finite Simple Groups, but
in a “light-touch” way. Two open problems are finding a proof
not using the Classification, and finding decent bounds for the
function involved.
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The difference graph

For the remainder of the talk, I will consider one particular
graph, which I will call the difference graph of the group. It is
defined like this:

I The power graph of G has x ∼ y if one of x and y is a
power of the other.

I The enhanced power graph of G has x ∼ y if there exists z
such that both x and y are powers of z; equivalently, if the
subgroup 〈x, y〉 generated by x and y is cyclic.

I The difference graph of G, which I will denote by D(G),
has as edge set the edges of the enhanced power graph
which are not edges of the power graph.

The power graph and enhanced power graph seem quite
similar; indeed, each determines the other. So we expect the
difference graph to be relatively sparse. But the analysis I give
here could be repeated for many other graphs defined on G,
and my guess is that many similar results can be obtained.
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Groups with edgeless difference graph

Theorem
For a finite group G, the graph D(G) has no edges if and only if every
element of G has prime power order.

One way round this is easy to see. If g ∈ G has order divisible
by two different primes p and q, then xp and xq are joined in the
enhanced power graph but not in the power graph. The other
direction is fairly easy too.
Such groups are called EPPO groups (acronym for “Elements of
Prime Power Order”). Their classification has an interesting
history; the problem was introduced by Higman and studied
by Suzuki. The classification was achieved by Brandl in 1981
and published in a rather obscure journal, so has been
rediscovered a number of times.
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Similarities between power graph and enhanced power
graph

Even if these graphs are not equal, they are not too far apart.

Theorem
I The clique number of the enhanced power graph is bounded by a

function of the clique number of the power graph. The function
has order about n log n.

I The matching numbers of the power graph and enhanced power
graph are equal.

The proof of the last fact, by Swathi, Sunitha and me, follows
familiar graph-theoretic arguments about matchings. If we
have a matching in the enhanced power graph containing
edges not in the power graph, we can replace it by a matching
of the same size with fewer edges not in the power graph.
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Other group classes defined by graphs

Several further interesting classes of groups can be defined by
requiring certain pairs of graphs defined on the groups to be
equal. For example,

Theorem
The enhanced power graph and the commuting graph of G are equal if
and only if G has cyclic or generalized quaternion Sylow subgroups.
Other classes defined in similar ways include Dedekind groups
(those in which every subgroup is normal), minimal
non-abelian groups (or non-nilpotent, or non-solvable), and
2-Engel groups (those satisfying the identity [[x, y], y] = 1,
where [x, y] is the commutator x−1y−1xy.
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Finding beautiful graphs

Some years ago, my colleague Colva Roney-Dougal and I were
looking at the generating graph of a group G, in which x and y
are joined whenever 〈x, y〉 = G.

We computed the generating graph of the alternating group A5,
and asked the computer to tell us the order of its automorphism
group. The answer was a shock to us: it was 23482733690880.
Things are even worse for the power graph: its automorpism
group has order 668594111536199848062615552000000.
Why are we getting these huge numbers?
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Twins

In brief, the explanation is that, if x is an element of order
m > 2, then for every positive integer d with gcd(m, d) = 1,
each of x and xd is a power of the other; so these two elements
have the same neighbours (apart from possibly one another) in
most of the interesting graphs on G: power graph, commuting
graph, generating graph, . . .

Call two vertices v, w of a graph Γ twins if they have the same
neighbours except possibly for one another. (One can
distinguish between open twins, with the same open
neighbourhoods, and closed twins, with the same closed
neighbourhoods, but we will not require this.)
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Now the relation of being equal or twins is an equivalence
relation on the vertex set, and the transposition swapping
twins and fixing everything else is an automorphism.

Thus, the direct product of symmetric groups on the twin
classes is a subgroup of the automorphism group of the graph.
This goes some way towards explaining those huge groups we
were finding.
For example, A5 has ten subgroups of order 3 (so ten twin
classes of size 2) and six subgroups of order 5 (so six twin
classes of size 4); so we get a group of order (2!)10.(4!)6 fixing
the twin classes. These automorphisms are of no interest! How
do we strip them away?
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Twin reduction
Twin reduction is the process where we find a pair of twins and
identify them, continuing until no further twins remain. I will
call the result of twin reduction the cokernel of the graph.

A graph is called a cograph if it contains no induced subgraph
isomorphic to the 4-vertex path. Cographs form an interesting
and important class: it is the smallest graph class containing
the 1-vertex graph and closed under complementation and
disjoint union. Moreover, cographs are perfect.

Theorem
I The result of twin reduction is, up to isomorphism, independent

of the order in which the reduction steps are done.
I The cokernel of a graph Γ is the 1-vertex graph if and only if Γ is

a cograph.

Problem
Choose a type of graph on groups. For which groups G is this graph
defined on G a cograph?
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A speculation
What follows is experimental mathematics. I have done some
computations for the power graph and the difference graph (I
will concentrate here on the difference graph), but I guess that
similar things happen for other types.

As a result of computations, I tentatively identify four types of
finite simple groups:

Type 1: These are EPPO groups, whose difference graph has no
edges at all. As we have seen, all EPPO groups have been
determined; the only simple ones are PSL(2, q) and Sz(q)
for a few small values of q, together with PSL(3, 4).

Type 2: Groups for which the difference graph is a cograph, so that
twin reduction gives a graph with a single vertex. The
simple groups with this property have been determined,
up to some number-theoretic problems which will
probably not be solved soon. For example, D(PSL(2, 2a)) is
a cograph if and only if each of q− 1 and q + 1 is either a
prime power or the product of two distinct primes.
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Type 3: The cokernel of D(G) is a disjoint union of many copies of
a small graph. This seems to happen for the remaining
groups PSL(2, q) or Sz(q). For example, for q = 23 or
q = 25, it consists of 253 or 325 copies of the graph K5 − P4.

Type 4: The cokernel of D(G) is an interesting graph. I mention a
few examples.

For G = PSL(3, 3), the cokernel of D(G) has vertex set the set of
point-line pairs in the projective plane of order 3. There are two
types of pair, flags and antiflags: this gives a bipartition of the
graph. The antiflag (P, L) is joined to the flag (Q, M) if and only
if Q ∈ L and O ∈ M. This graph has 169 vertices, diameter 5
and girth 6. The valencies of antiflags are 4, those of flags are 9.
This simple graph construction may be worth investigating for
other projective planes.
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For G = M11 (the Mathieu group), the cokernel of D(G) is also
bipartite, with bipartite sets of sizes 165 and 220; the graph is
semiregular, with valencies 4 and 3 respectively in the two
partite sets, and has diameter and girth 10.

In all Type 4 cases I have looked at, going to the cokernel strips
away all the unwanted automorphisms: the automorphism
group of the graph turns out to be the same as the
automorphism group of the group G we start with.

Problem
Have we seen all the types of behaviour of cokernels of difference
graphs of simple groups? Is there a reason why the girth is often
large, or why the automorpism group is Aut(G)?
Further computation would surely find more interesting
examples!
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More?

Recently a number of new ideas have been introduced into the
theory, including supergraphs, invariable generation, and the
independence graph. But there is no time to discuss these . . .

. . . for your attention.
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