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Graphs on groups

Probably to most people, “graphs on groups” means Cayley
graphs. I am talking about something different, typefied by the
commuting graph of a group; the vertices are the group
elements, two vertices joined if they commute.

There are several reasons why we might be interested in graphs
like this.
1. The graph gives information about the group. The
commuting graph was introduced by Brauer and Fowler in
their seminal paper in 1955. They showed that, in a non-abelian
finite simple group of even order, elements are not too distant
in the graph, and used this to show that there are only finitely
many such groups with a prescribed involution centralizer.
This was perhaps the first step in the thousand-mile journey to
the Classification of Finite Simple Groups.
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2. The group gives us constructions of interesting graphs. For
example, the power graph (two vertices joined if one is a power
of the other) of the Mathieu group M11 contains within it some
interesting graphs with large girth. This is probably true for
other simple groups as well; exploration of this is underway.

3. The interaction between group and graph(s) enables us to
define interesting classes of groups, and has led to new results
in group theory and new characterisations of interesting classes
of graphs.

There is far too much known on this topic for a complete
account here. I will try to tell the story mostly by examples.
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Personal history
A couple of years ago, I found myself thinking obsessively
about these graphs, and so I wrote a 50-page survey article
about them. Since I no longer have to strive to get papers in the
best possible journals, I simply put it on the arXiv.

Two things happened as a result:
I Alireza Abdollahi invited me to publish it in the journal he

edits, the International Journal of Group Theory. This is a
diamond open access journal, so I was happy to accept.

I Ambat Vijayakumar and Aparna Lakshmanan at CUSAT
in Kochi, Kerala, ran an on-line discussion group on
graphs and groups, and invited me to be involved. This
led to many new results and ideas.
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A hierarchy
The two graphs I have mentioned, together with several others,
form a hierarchy: each is contained in the next as a spanning
subgraph. Here they are with the joining rules for elements
g, h ∈ G.

I The null graph.
I The power graph: one of g, h is a power of the other.
I The enhanced power graph: g, h generate a cyclic group.
I The deep commuting graph: the inverse images of g, h

commute in every central extension of G.
I The commuting graph: g, h generate an abelian group.
I The non-generating graph: g, h generate a proper

subgroup of G.
I The complete graph.

(In fact the commuting graph is contained in the
non-generating graph provided G is either non-abelian or not
2-generated.)
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The theory of the deep commuting graph was developed with
Bojan Kuzma, and I will not speak about it here, though it is
connected with interesting group theory (isoclinism, the Schur
and Bogomolov multipliers, etc.)

All these graphs have the property that they are invariant
under the automorphism group of G. (This is not so obvious for
the deep commuting graph, but Bojan and I prove it in our
forthcoming paper.)
Other graphs could be added to the list, including the
nilpotency graph (g, h joined if they generate a nilpotent group)
and the solvability graph (g, h joined if they generate a solvable
group).
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When are two graphs equal?
Interesting classes of groups are defined by the condition that
two graphs coincide. Some are trivial; for example, the power
graph is null only for the trivial group, and the non-generating
graph is complete only if G is not 2-generated.

I The power graph is equal to the enhanced power graph if
and only if G is an EPPO group (all elements have prime
power order). These groups were studied by Higman and
Suzuki, and classified by Brandl in the early 1990s.

I The enhanced power graph is equal to the commuting
graph if and only if all Sylow subgroups are cyclic or
generalized quaternion. The classification follows from
Burnside’s transfer theorem and the Gorenstein–Walter
theorem.

I For G non-abelian, the commuting graph is equal to the
non-generating graph if and only if G is a minimal
non-abelian group. These groups were determined by
Miller and Moreno in 1904.
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Into the second dimension

The hierarchy can be extended into a second dimension. A
number of authors had studied special cases; the general case
was considered by G. Arunkumar, Rajat Kanti Nath, Lavania
Selvaganesh and me in a paper in press.

This involves choosing also a G-invariant equivalence relation.
I will consider the relations of conjugacy and same order. Now
given any graph type, say the power graph, we define the
conjugacy superpower graph by the rule that g and h are joined
if there exist g′ and h′ in the conjugacy classes of g and h
respectively such that g′ and h′ are joined in the power graph.
Similarly for other equivalence relations and other graph types.
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The 2-dimensional hierarchy

Here is part of the resulting 2-dimensional hierarchy:
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When do two of these coincide?

Of the nine graphs in the picture, two of them (the order
supercommuting graph and the order superenhanced power
graph) coincide; the rest are all distinct in general. But equality
defines more interesting classes:

Theorem
I The conjugacy supercommuting graph of G is equal to the

commuting graph if and only if G is a 2-Engel group, that is,
satisfies the identity[x, y, y] = 1;

I the conjugacy superpower graph of G is equal to the power graph
if and only if G is a Dedekind group, that is, one in which every
subgroup is normal.
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Comments

Dedekind groups are all known. Such a group is either abelian
or of the form A× B× C where A is a quaternion group, B an
elementary abelian 2-group, and C an abelian group of odd
order.

Engel groups have had a lot of attention. Any nilpotent group
of class 2 is 2-Engel, and every 2-Engel group is nilpotent of
class at most 3 (shown independently by Hopkins and Levi).
The first part uses the following result:

Theorem
A group G satisfies the 2-Engel identity if and only if every
centralizer is a normal subgroup.
The only proof we found in the literature was a StackExchange

post by Korhonen, using a result of Kappe. Information on
earlier proofs welcome!
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Approximately equal?

We can widen the classes of groups by asking not for two
graphs in the hierarchy to be equal but for them to have the
same value for some monotone graph parameter. Here is an
example.

Recall that the power graph and the enhanced power graph of
G are equal if and only if every element of G has prime power
order.

Theorem
I The power graph and enhanced power graph of G have the same

clique number if and only if the largest order of an element of G
is a prime power.

I For every finite group G, the power graph and enhanced power
graph of G have the same matching number.

There are many similar questions which could be asked!
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Compressed supergraphs

We defined the supergraphs above to have vertex set the entire
group, so that we could compare them with other graphs in the
hierarchy. However, it would be more natural to define
compressed versions of these graphs, in which we take the
vertices to be the equivalence classes of the appropriate
equivalence relation (conjugacy or same order, in my
examples). Then two classes C and D are joined if there is are
vertices x ∈ C and y ∈ D which are joined in the original graph.

I will give you one example of this. We can use it to prove a
strengthening of a classical result on finite groups.
In a finite group G, I will denote the conjugacy class of the
element g by gG = {x−1gx : x ∈ G}. I will consider the
compressed conjugacy superpower graph for the relation of
solvability. Thus, two classes gG and hG are joined in this graph
if there exist g′ ∈ gG and h′ ∈ hG such that 〈g′, h′〉 is a solvable
group. This is known as the solvable conjugacy class graph,
written Γscc(G).
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Landau’s theorem

In 1904, Landau showed:

Theorem
Given a positive integer k, there are only finitely many finite groups
which have k conjugacy classes.
I shall give the proof. By the Orbit-Stabilizer Theorem, the size
of a conjugacy class is given by |gG| = |G|/|CG(g)|, where
CG(g) is the centralizer of G. Since G is the disjoint union of
conjugacy classes, we have

k

∑
i=1

1
ni

= 1,

where ni is the size of the centralizer of an element in the ith
conjugacy class.
Now it is an exercise to show that the above equation has only
finitely many solutions; and the largest ni is |CG(1)| = |G|.
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A strengthening

With Parthajit Bhowal, Rajat Kanti Nath and Benjamin
Sambale, I have proved:

Theorem
Given a positive integer k, there are only finitely many finite groups
G whose solvable conjugacy class graph has clique number k.
The proof uses the Classification of Finite Simple Groups, but
does not require very detailed knowledge about the groups. An
important ingredient is a theorem of S. Dolfi, R. M. Guralnick,
M. Herzog and C. E. Praeger, extending John Thompson’s
N-group theorem: A finite group is solvable if and only if its
solvable conjugacy class graph is complete.
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Seeking the jewel in the lotus

To expand a compressed graph, we simply “blow up” each
vertex to a complete graph on the equivalence class of the
appropriate size.

We note that vertices in the same equivalence class have the
same neighbours, that is, they are twins. (Formal definition
shortly.)
In fact, all the graphs we have considered will have twins. For
example, if the element g ∈ G has order m > 2, and
gcd(k, m) = 1, then g and gk are twins in any of the graphs
defined earlier.
Graphs with many pairs of twin vertices are not likely to be so
interesting from some points of view. Since my aim in the rest
of the talk is to produce beautiful graphs from groups, we will
have to deal with the twins.
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Twins and twin reduction

Two vertices v, w in a graph Γ are twins if they have the same
neighbours except possibly for one another. We call them open
or closed twins according as their open or closed
neighbourhoods are equal.

The process of twin reduction consists of picking a pair of twins
and identifying them, and continuing until no further twins
remain.

Theorem
The result of applying twin reduction to a graph is unique up to
isomorphism, independent of the order in which the reduction is done.
I will call the resulting graph the cokernel of Γ.
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The cokernel may be trivial.

A cograph is a graph which has no induced subgraph
isomorphic to the 4-vertex path P4. This important class of
graphs has many characterizations:

Theorem
The following conditions for a graph Γ are equivalent:
I Γ is a cograph.
I Γ can be built from 1-vertex graphs by the operations of disjoint

union and complementation.
I The cokernel of Γ is the 1-vertex graph.

This raises the question: For which finite groups G is the power
graph (or one of our other graphs) a cograph? Pallabi Manna
will talk about this at the conference.
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Power graphs of simple groups

What follows is largely experimental. We take a finite simple
group, remove the identity (which is joined to all other
vertices), remove connected components which are complete,
and then perform twin reduction.

It appears that non-abelian finite simple groups can be divided
into three classes:
I The power graph is a cograph. These simple groups have

been classified in a paper with Pallabi Manna and Ranjit
Mehatari. We find certain groups PSL(2, q) and Sz(q) (the
precise values of q depend on hard number-theoretic
problems) and the group PSL(3, 4).

I After the above process, we are left with a large number of
isomorphic connected components. This occurs for A7,
PSL(2, 23) and PSL(2, 25). For example, A7 gives a graph
with 35 connected components, each isomorphic to a tree
with three arms of length 3 radiating from a central vertex.
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I The graph that remains is connected, often with large girth,
and nice structural properties, and with automorphism
group equal to the automorphism group of the original
simple group. This occurs for PSL(3, 3), PSU(3, 3) and M11.

For these three simple groups, the number of vertices, diameter
and girth are given in the table.

Group Vertices Orbits Diameter Girth
PSL(3, 3) 754 4 11 12
PSU(3, 3) 784 7 10 3

M11 1210 4 20 20

What is going on?
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Variants of the generating graph

Recall the generating graph, where two elements are joined if
they generate the group. Of course, if the group is not
generated by two elements, this graph is null! Fortunately, all
finite simple groups are 2-generated, but what about other
groups?

Recently Andrea Lucchini and Daniele Nemmi made two
definitions to get around this problem:
I The independence graph of G joins g to h if {g, h} is

contained in a generating set for G which is minimal (with
respect to inclusion).

I The rank graph joins g to h if {g, h} is contained in a
generating set of minimum cardinality.
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Relation to the hierarchy

It is easy to see that the independence graph is contained in the
complement of the power graph, while the rank graph is
contained in the complement of the enhanced power graph.

In a preprint which has not yet appeared as far as I know, these
two authors, with Colva Roney-Dougal and Saul Freedman,
have determined the groups for which equality holds in either
of these inclusions.
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