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When I arrived in Oxford to start my DPhil in 1968, after I had
read Wielandt’s Finite Permutation Groups, Πeter gave me this
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The paper was never published. It turned out that Leonard
Scott and Olaf Tamaschke had done similar work at about the
same time, and although there were plans for Πeter and
Leonard to collaborate, they never came to anything.
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Background

In the 1960s, three streams previously separate began to
converge, bringing different names, axioms, and techniques:

I In permutation group theory, the methods used by Schur
and Wielandt on what are now called Schur rings were
abstracted into combinatorial structures, largely by Donald
Higman, who called them coherent configurations.

I In statistics, the underlying structures of partially balanced
incomplete-block designs were abstracted into
combinatorial structures, by R. C. Bose and his students,
who called them association schemes.

I In the (then) Soviet Union, Boris Weisfeiler and his
colleagues were attacking the graph isomorphism
problem, and devised combinatorial structures which they
called cellular rings.

These types of structure are almost the same, as we will see.
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A coherent configuration is a collection A1, . . . , Ar of square 0-1
matrices of the same size, summing to the all-1 matrix J and
having a subset which sums to the identity matrix I, closed
under transposition, and having the property that for any i, j,
we have

AiAj =
r

∑
k=1

aijkAk.

If all the matrices are symmetric, it is an association scheme.
A cellular algebra was the same as a coherent configuration
apart from a small difference. But the term “cellular algebra”
has been used with a quite different meaning by Graham and
Lehrer, so this term has dropped out of use.
I should stress that this definition can be given in terms of a
colouring of the edges of the complete directed graph instead
of matrices.
Many combinatorial objects are special cases of coherent
configurations. The definitions just given probably don’t
conjure up a picture in your mind. So here is a special case.
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Strongly regular graphs
A simple graph on n vertices is strongly regular if, for some
integers k, λ, µ, it has the properties
I any vertex has k neighbours;

I any two adjacent vertices have λ common neighbours;
I any two non-adjacent vertices have µ common neighbours.

An association scheme with r = 3 matrices is the same thing as
a complementary pair of strongly regular graphs.
The famous Petersen graph is an example, with k = 3, λ = 0,
µ = 1.
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Wielandt and Neumann

In 1956, Helmut Wielandt proved that a finite primitive
permutation group acting on a set Ω of size 2p (where p is an
odd prime) is 2-transitive, unless p has the form 2a2 + 2a + 1 for
some positive integer a, in which case it may have rank 3 (this
means three orbits on the set Ω×Ω, whose sizes are expressed
in terms of the parameter a.)

Peter Neumann’s aim was to prove a similar theorem for the
case where |Ω| = 3p, where p is a prime greater than 3.
Wielandt needed to do a lot of work decomposing the
permutation character of his group, and then the combinatorial
argument, though innovative, is fairly straightforward. For
Neumann, on the other hand, the decomposition of the
permutation character was easier, because of a theorem of
Walter Feit proved in the meantime; but the combinatorial part
is much more complicated, and the result too; there are three
possible quadratic expressions for the prime p as well as three
sporadic values.
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Graphs

At about this time, another pioneer, Charles Sims, was
investigating permutation groups using graph theory,
specifically results of Bill Tutte.

Whereas Higman and Neumann considered the coherent
configuration associated with a permutation group, which
takes all orbital graphs together and uses numerical and
algebraic information, Sims chose a particular graph and went
more deeply into its structure.
This led him to his celebrated conjecture, later proved, using
the Classification of Finite Simple Groups (CFSG) by three of
Πeter’s students together with Gary Seitz.
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Permutation groups and combinatorics

Since then, many parts of combinatorics, including designs,
codes, and Latin squares, have been used in the study of
permutation groups.

In return, permutation group theory has contributed to several
areas of combinatorics, including regular polytopes, fair games,
and synchronizing automata.
The two subjects are now close partners.
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So what now?

As I explained, Πeter’s paper was never published. However,
it is a tour de force, and had it been published it would have
been recognised as an important link in the chain of ideas
sketched earlier. I believe that it is too good to be lost.

To explain why, I return to Wielandt’s proof. The first thing to
note is that, since those far-off days, we have a new tool, CFSG,
which can be used to show that the only case to arise in
Wielandt’s theorem is a = 1, p = 5, in which case the group is
the symmetric or alternating group of degree 5, acting on the
ten 2-element subsets of a 5-set.
A similar remark applies to Neumann’s theorem. So there is no
reason to publish the paper as it is, since CFSG makes much
stronger results possible.
But that is not the end of the story . . .
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As noted, Wielandt first showed that the permutation character
decomposes into irreducible constituents of degrees 1, p− 1,
and p. From general theory, these numbers are the multiplicities
of the eigenvalues of the matrices in the corresponding
coherent configuration (these are the identity and the adjacency
matrices of a strongly regular graph and its complement).

In the case p = 5, the strongly regular graph is the famous
Petersen graph, which we met earlier.
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In fact the combinatorial part of Wielandt’s argument shows
the following:

Theorem
Let Γ be a strongly regular graph on 2n vertices, whose eigenvalues
have multipicities 1, n− 1 and n, for some natural number n. Then
one of the following is true:

I Γ or its complement is a disjoint union of n edges;
I Γ or its complement has the parameters found by Wielandt.

I am not sure who first noticed this. The proof is in my book
with Jack van Lint. Note that in the second case, the Petersen
graph and its complement are not the only examples; there are
a number of further examples (the first pairs having 26
vertices).



In fact the combinatorial part of Wielandt’s argument shows
the following:

Theorem
Let Γ be a strongly regular graph on 2n vertices, whose eigenvalues
have multipicities 1, n− 1 and n, for some natural number n. Then
one of the following is true:
I Γ or its complement is a disjoint union of n edges;

I Γ or its complement has the parameters found by Wielandt.

I am not sure who first noticed this. The proof is in my book
with Jack van Lint. Note that in the second case, the Petersen
graph and its complement are not the only examples; there are
a number of further examples (the first pairs having 26
vertices).



In fact the combinatorial part of Wielandt’s argument shows
the following:

Theorem
Let Γ be a strongly regular graph on 2n vertices, whose eigenvalues
have multipicities 1, n− 1 and n, for some natural number n. Then
one of the following is true:
I Γ or its complement is a disjoint union of n edges;
I Γ or its complement has the parameters found by Wielandt.

I am not sure who first noticed this. The proof is in my book
with Jack van Lint. Note that in the second case, the Petersen
graph and its complement are not the only examples; there are
a number of further examples (the first pairs having 26
vertices).



In fact the combinatorial part of Wielandt’s argument shows
the following:

Theorem
Let Γ be a strongly regular graph on 2n vertices, whose eigenvalues
have multipicities 1, n− 1 and n, for some natural number n. Then
one of the following is true:
I Γ or its complement is a disjoint union of n edges;
I Γ or its complement has the parameters found by Wielandt.

I am not sure who first noticed this. The proof is in my book
with Jack van Lint. Note that in the second case, the Petersen
graph and its complement are not the only examples; there are
a number of further examples (the first pairs having 26
vertices).



It is my belief that a similar but substantially more elaborate
theorem is hiding in Πeter’s calculations. This summer, a
project student Marina Anagnostopoulou-Merkouri and I hope
to work this out.

In preparation for this, I have re-typed Πeter’s paper in LATEX
from a smudgy scan of a photocopy, and I would be happy to
send this to anyone interested.
I should say that typing this paper out was a happy experience;
it brought its author back vividly to my mind.

. . . for your attention.
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