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The theorem

In the first part of the talk, I will describe our theorem. In the
second part, time permitting, I will talk about some extensions
and applications.



An analogy

I begin with an analogy. If you know any projective geometry,
you will be aware of the following phenomenon:

I a 1-dimensional projective geometry (a projective line) has
no incidence structure at all; it is just a set.

I 2-dimensional projective geometries (projective planes)
exist in wild profusion, so that there is no hope of
classification.

I For higher dimensions, a projective geometry is highly
structured, and is coordinatised by an algebraic object (a
division ring).

I am going to show you a very similar phenomenon: “wild
profusion” will mean arbitrary Latin squares, while the
“algebraic object” will be a group.
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Permutation groups

I begin with a little diversion into permutation group theory. G
will denote a permutation group on Ω.

G is transitive if no non-trivial subset of Ω is G-invariant; it is
primitive if no non-trivial partition of Ω is G-invariant. (The
trivial subsets or partitions are those invariant under the
symmetric group on Ω.
Many (but not all) questions about permutation groups can be
reduced to the case where the group is primitive. This has been
a standard technique since Jordan in the 19th century.
So how can we understand primitive groups?
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The O’Nan–Scott Theorem

The following theorem (and indeed rather more) was proved
by Michael O’Nan and Leonard Scott (independently) in 1979.
The version I need here is little more than is in Jordan’s Traité
des Substitutions.

Theorem
A finite primitive permutation group is of one of the following types:
affine, wreath product, diagonal, or almost simple.
Affine groups preserve affine spaces; wreath products preserve
Cartesian structures (as I discuss later); almost simple groups
form a ragbag, and there is no hope for a uniform description
of the structures they act on.
Our aim is to understand the geometric structure underlying
diagonal groups. But, unlike in the O’Nan–Scott theorem, we
do not assume that these groups are finite or primitive.
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Things went on slowly, but at the six-month programme on
groups at the Isaac Newton Institute in Cambridge in 2020, we
hoped to bring it to a conclusion.

But the coronavirus had other ideas. So we put it on hold and
all went home.
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Diagonal groups

Let m be a positive integer and T a group, finite or infinite. I define
the diagonal group D(T, m) to be the group of permutations of
Ω = Tm generated by the following transformations. (I put the
elements of Ω in square brackets to distinguish them from group
elements.)

I The group Tm acting by right multiplication.

I another copy T0 of T acting by simultaneous left multiplication
of all coordinates by the inverse.

I Aut(T) acting in the same way on all coordinates.

I Sm acting by permuting the coordinates.

I An element τ:

[t1, t2, . . . , tm] 7→ [t−1
1 , t−1

1 t2, . . . , t−1
1 tm].

Don’t remember the details: this is just a group built from T and m.
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Partitions

Our geometry will be defined in terms of partitions. So here is a
brief introduction.

A partition of Ω can be thought of in any of three ways:
I a set of non-empty, pairwise disjoint subsets of Ω whose

union is Ω;
I the set of equivalence classes of an equivalence relation on

Ω;
I the kernel of a function F on Ω, that is, the set of inverse

images of points in the range of F.
The set P(Ω) of partitions of Ω is partially ordered by
refinement: P 4 Q if every part of P is contained in a part of Q.
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The partition lattice

With this order, P(Ω) is a lattice: any two partitions P and Q
have a unique infimum or meet P∧Q, and a unique supremum
or join P∨Q.

I P∧Q is the partition of Ω whose parts are all non-empty
intersections of a part of P and a part of Q.

I P∨Q is the partition into connected components of the
graph in which two points are adjacent if they lie in the
same part of either P or Q.

A subset of P(Ω) is a sublattice if it is closed under the meet
and join operations of P(Ω).
We also require the notion of a join-semilattice, closed under
join but maybe not under meet.
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Coset partitions

Let G be a finite group. For each subgroup H of G, consider the
partition PH of G into right cosets of H. We call this a coset
partition.

Now, if H and K are subgroups of G, then we have
I PH 4 PK if and only if H 6 K;
I PH ∧ PK = PH∩K;
I PH ∨ PK = P〈H,K〉.

So the collection of all coset partitions of G forms a sublattice of
P(G) which is isomorphic to the subgroup lattice of G, under
the map H 7→ PH.
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Structures for wreath products

These have many different descriptions. Praeger and
Schneider, who discussed them before moving on to diagonal
groups, call them Cartesian decompositions.

Graph theorists call them Hamming graphs. The name hints at
a connection with coding theory. Indeed, Delsarte called them
Hamming schemes. This description, however, loses the order
relation. Statisticians call them completely crossed orthogonal
block structures.
I will use the term Cartesian lattices.
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Cartesian lattices

The Boolean lattice Bn is the lattice of all subsets of {1, . . . , n}.

Let A be an alphabet, finite or infinite (with |A| > 1). Let
Ω = An be the set of all words of length n over the alphabet A.
For I ⊆ {1, . . . , n}, let QI be the partition of Ω corresponding to
the equivalence relation ≡I, where

(a1, . . . , an) ≡I (b1, . . . , bn)⇔ (∀j /∈ I)(aj = bj).

Now the partitions QI for I ⊆ {1, . . . , n} form a sublattice of the
partition lattice on Ω which is isomorphic to Bn by the map
I 7→ QI.
I will call this a Cartesian lattice. Note that the group of
permutations of Ω mapping the lattice to itself (as set of
partitions) is the wreath product Sym(A) Wr Sym({1, . . . , n}).
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Latin squares, 1

You probably think of a Latin square as something like this: a
square array of size n× n filled with letters from an alphabet of
size n, so that each letter occurs once in each row and column.

A B C
B C A
C A B

Latin squares exist in great profusion. There are more than
exp(m2) Latin squares of order m; exact numbers are only
known up to m = 11.
We are going to give a different definition. Let Ω consist of the
n2 cells of the array. We have three partitions of Ω: R, the rows;
C, the columns; and L, the letters (the partition into sets of cells
containing the same letter).
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Latin squares, 2

A B C
B C A
C A B

1 2 3
4 5 6
7 8 9

I R = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
I C = {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}};
I L = {{1, 6, 8}, {2, 4, 9}, {3, 5, 7}}.

Together with E (the partition into singletons) and U (the
partition with a single part), these three partitions form a
lattice. It has the very special property that, if one of R, C, L is
omitted, the resulting four partitions form a 2-dimensional
Cartesian lattice on Ω.
This property characterises Latin squares.
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Latin squares, 3

With the partition definition, we could define an
automorphism of a Latin square to be a permutation of Ω
fixing {R, C, L} setwise. (These mappings are usually called
paratopisms in the Latin squares literature.)

However, one case is interesting to us: the Cayley table of a
group T is a Latin square, and its paratopism group is the
diagonal group D(T, 2) defined earlier. (This fact is maybe not
as well known as it should be!)
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Diagonal semilattices

Let us return to diagonal groups for a moment. Recall that
D(T, m) acts on Tm, where m copies T1, . . . , Tm of T act on the
corresponding coordinate of Tm by right multiplication, while
the last factor T0 acts by simultaneous left multiplication by the
inverse.

Let Q0, . . . , Qm be the orbit partitions of Ω = Tm corresponding
to these groups. Thinking of Tm as a group, these are the
coordinate partitions of the coordinate groups T1, . . . , Tm and
the diagonal subgroup of Tm (hence the name).
The join-semilattice generated by Q0, . . . , Qm (it is not a lattice
for m > 3) is an object which we will call a diagonal semilattice
and denote by D(T, m).

Theorem
The automorphism group of D(T, m) is the diagonal group D(T, m).
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The main theorem

Theorem
Let m > 2, and let Q0, Q1, . . . , Qm be partitions of Ω. Suppose that
any m of these partitions are the minimal non-trivial elements in an
m-dimensional Cartesian lattice on Ω.

I If m = 2, then {Q0, Q1, Q2}, together with E and U, form a
Latin square, unique up to isotopism; every Latin square arises
in this way.

I If m > 3, then there is a group T, determined up to isomorphism,
such that the join-semilattice generated by {Q0, . . . , Qm} is the
diagonal semilattice D(T, m).

As promised, for m = 2 the situation is chaotic, but for m > 3
the algebraic structure coordinatising the semilattice (the group
T) emerges naturally from the combinatorics.
I am very proud of the proof we found, but I fear I don’t have
time even for a sketch.
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Applications

In the remaining time I will briefly mention some applications
and extensions of this result.



The diagonal graph

There is a close connection between the Cartesian lattice and
the Hamming graph. Recall that An is the set of words of length
n over the alphabet A. The Hamming graph has vertex set An;
two vertices are joined if as words the agree in all positions
except one (that is, they have Hamming distance 1).

Said otherwise, two elements of An are joined if they are
contained in the same part of a minimal non-trivial partition of
the Cartesian lattice. So graph and lattice determine each other.
In a similar way, we can construct a graph from the diagonal
semilattice: two vertices are joined if they are contained in the
same part of a minimal non-trivial partition of D(T, m).
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This is an interesting graph, worth further investigation. I
mention a few things about it.

I Except for a few very small cases, the semilattice can be
reconstructed from the graph; so its automorphism group
is the diagonal group D(T, m).

I For m = 2, it is a (strongly regular) Latin square graph,
while for |T| = 2, it is a (distance-transitive) folded cube.

I Except for a few very small cases, its clique number is |T|.
I If m is odd, or if |T| is odd, or if the Sylow 2-subgroups of

T are non-cyclic, its chromatic number is also |T|.



This is an interesting graph, worth further investigation. I
mention a few things about it.
I Except for a few very small cases, the semilattice can be

reconstructed from the graph; so its automorphism group
is the diagonal group D(T, m).

I For m = 2, it is a (strongly regular) Latin square graph,
while for |T| = 2, it is a (distance-transitive) folded cube.

I Except for a few very small cases, its clique number is |T|.
I If m is odd, or if |T| is odd, or if the Sylow 2-subgroups of

T are non-cyclic, its chromatic number is also |T|.



This is an interesting graph, worth further investigation. I
mention a few things about it.
I Except for a few very small cases, the semilattice can be

reconstructed from the graph; so its automorphism group
is the diagonal group D(T, m).

I For m = 2, it is a (strongly regular) Latin square graph,
while for |T| = 2, it is a (distance-transitive) folded cube.

I Except for a few very small cases, its clique number is |T|.
I If m is odd, or if |T| is odd, or if the Sylow 2-subgroups of

T are non-cyclic, its chromatic number is also |T|.



This is an interesting graph, worth further investigation. I
mention a few things about it.
I Except for a few very small cases, the semilattice can be

reconstructed from the graph; so its automorphism group
is the diagonal group D(T, m).

I For m = 2, it is a (strongly regular) Latin square graph,
while for |T| = 2, it is a (distance-transitive) folded cube.

I Except for a few very small cases, its clique number is |T|.

I If m is odd, or if |T| is odd, or if the Sylow 2-subgroups of
T are non-cyclic, its chromatic number is also |T|.



This is an interesting graph, worth further investigation. I
mention a few things about it.
I Except for a few very small cases, the semilattice can be

reconstructed from the graph; so its automorphism group
is the diagonal group D(T, m).

I For m = 2, it is a (strongly regular) Latin square graph,
while for |T| = 2, it is a (distance-transitive) folded cube.

I Except for a few very small cases, its clique number is |T|.
I If m is odd, or if |T| is odd, or if the Sylow 2-subgroups of

T are non-cyclic, its chromatic number is also |T|.



The chromatic number mentioned in the fourth point above
depends on the truth of the Hall–Paige conjecture on complete
mappings of groups, whose proof depends on the classification
of finite simple groups.

This has an application to the question of synchronization of
finite automata, about which I spoke here in 2013.
It is conjectured that, if T has non-trivial cyclic Sylow
2-subgroups, then the Latin square graph of its Cayley table
has chromatic number |T|+ 2. We conjecture that the same is
true for the diagonal graph for any even m.
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An extension

I will briefly mention some work on extending this result.

The main theorem talks about the situation where we have
m + 1 partitions, any m of which are minimal elements of an
m-dimensional Cartesian lattice.

Question
What if we have more than m + 1 partitions?
For m = 2, we just have a set of mutually orthogonal Latin
squares. So we called the general case a set of mutually
orthogonal diagonal semilattices, or MODS.
We have a little theory and some examples. But we can’t even
settle the following question. Any m + 1 of the partitions define
a diagonal semilattice, which is coordinatised by a group. Does
every set of m + 1 partitions define the same group?
This is false for MOLS. We can have two orthogonal Latin
squares (defining four partitions) such that any three of the four
define a group, but only one pair of the groups are isomorphic.
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The example

Here is the example. The four partitions are rows, columns,
first letters, second letters.

11 22 33 44 55 66 77 88
42 34 21 13 86 78 65 57
53 61 74 82 17 25 38 46
84 73 62 51 48 37 26 15
35 47 16 28 71 83 52 64
76 85 58 67 32 41 14 23
27 18 45 36 63 54 81 72
68 56 87 75 24 12 43 31

Omitting the ith partition, for i = 1, . . . , 4, we obtain the Cayley
tables of the groups D8, C2 × C4, D8, and C2 × C2 × C2.
Can we get four different groups in this way? What about more
than four partitions?
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