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Background

I will begin by introducing some of the main characters in the
story.



Graphs and groups

Graphs and groups represent very contrasting parts of the
mathematical universe.

Groups measure symmetry; they are highly structured, elegant
objects.
Graphs, on the other hand, are “wild”: we can put in edges
however we please. Some graphs are beautiful, but most are
scruffy.

Algebraic graph theory is the area where these two very
different subjects can meet and have a productive relationship.
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Brauer and Fowler

You might think that “graphs defined on groups” refers to
Cayley graphs; but this is not the story I have to tell.

The story begins some time later than Cayley, with a paper in
1955 by Brauer and Fowler. There are several remarkable
things about this paper. From my point of view, this is the
paper that introduced the commuting graph of a group; but the
term “graph” is never used in the paper.
The commuting graph of a group G is the graph whose vertex
set is G, with x joined to y if xy = yx.
The identity (or indeed, elements of the centre) are joined to all
other vertices; so distances in this graph are not very
interesting. So it is fairly common to do as Brauer and Fowler
implicitly did, and delete the vertices in Z(G).
I will not do so; I will explain why shortly. So for me the vertex
set of the commuting graph is G.
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Brauer and Fowler, 2

Before leaving the Brauer–Fowler paper, I will make two
remarks.

I As noted, they don’t use the word graph, but they make
extensive use of the graph distance, the length of the
shortest sequence from x to y not containing the identity,
where consecutive elements commute. Questions about
connectedness and diameter of this graph now have an
extensive literature.

I The main result of the paper is that, given a group H with
a central involution, there are only finitely many finite
simple groups having an involution whose centraliser is H.
This result was fundamental to the Classification of Finite
Simple Groups; their paper was perhaps the first step on
this thousand-mile journey.



Brauer and Fowler, 2

Before leaving the Brauer–Fowler paper, I will make two
remarks.
I As noted, they don’t use the word graph, but they make

extensive use of the graph distance, the length of the
shortest sequence from x to y not containing the identity,
where consecutive elements commute. Questions about
connectedness and diameter of this graph now have an
extensive literature.

I The main result of the paper is that, given a group H with
a central involution, there are only finitely many finite
simple groups having an involution whose centraliser is H.
This result was fundamental to the Classification of Finite
Simple Groups; their paper was perhaps the first step on
this thousand-mile journey.



Brauer and Fowler, 2

Before leaving the Brauer–Fowler paper, I will make two
remarks.
I As noted, they don’t use the word graph, but they make

extensive use of the graph distance, the length of the
shortest sequence from x to y not containing the identity,
where consecutive elements commute. Questions about
connectedness and diameter of this graph now have an
extensive literature.

I The main result of the paper is that, given a group H with
a central involution, there are only finitely many finite
simple groups having an involution whose centraliser is H.
This result was fundamental to the Classification of Finite
Simple Groups; their paper was perhaps the first step on
this thousand-mile journey.



Some other graphs

Before plunging in, I will define a few more graphs on the
vertex set G. In each case, I give the rule for joining x to y.

I The power graph: one of x and y is a power of the other.
I The enhanced power graph: x and y are both powers of an

element z (equivalently, 〈x, y〉 is cyclic).
I The generating graph: 〈x, y〉 = G.
I The non-generating graph, the complement of the

generating graph.
This is not the complete dramatis personae, just the big stars.
Some bit players will come in later. Indeed you can imagine
some for yourself. Noting that x and y are joined in the
commuting graph if and only if 〈x, y〉 is abelian, we could
define a graph where the joining rule is 〈x, y〉 is nilpotent, or
solvable, or . . .
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Some history

I wrote a paper on these graphs earlier this year and posted it
on the arXiv. Two things happened:

I Alireza Abdollahi from Isfahan saw it and invited me to
submit it to the International Journal of Group Theory, where
it has now appeared, as 11 (2022), 43–124; doi:
10.22108/ijgt.2021.127679.1681

I Ambat Vijayakumar and Aparna Lakshmanan from Kochi
saw it and decided to set up a research discussion on
graphs and groups, which ran for five months and
stimulated a lot of new research, including some of the
results reported here; so the survey is now out of date!
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Some philosophy

Each of the types of graph I mentioned earlier has a huge
literature. For example, a recent survey of the power graph
includes 82 references, mostly published since an earlier survey
in 2013.

My intention is to show that we gain something by considering
these graphs together rather than individually. So I will mostly
not present detailed results about a particular family.
In order to get started, we observe that these graphs form a
hierarchy; each is contained in the next as a spanning
subgraph. This is the main reason for taking the vertex set in
each case to be the whole group.
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A hierarchy of graphs

The most interesting questions about the hierarchy of graphs
concern their relations to one another: for which groups are
two of the graphs equal? If not, what can we say about their
difference?

This innocent question leads to some deep and important
group theory. For example, a paper in preparation by
Freedman, Lucchini, Nemmi and Roney-Dougal (which I won’t
have time to discuss).
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The hierarchy

Here is the hierarchy, with notation and a brief reminder of the
definition of adjacency of two elements x and y. The vertex set
is a group G in each case.
I The null graph.

I The power graph Pow(G): x = ym or y = xm.
I The enhanced power graph EPow(G): 〈x, y〉 is cyclic.
I The commuting graph Com(G): xy = yx.
I The non-generating graph NGen(G): 〈x, y〉 6= G.
I The complete graph.

Each is contained in the next, except that the commuting graph
is contained in the non-generating graph if and only if G is
either non-abelian or has more than two generators (that is, for
all groups except 2-generated abelian groups).
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Equality?

Once we have a hierarchy, it is natural to ask when adjacent
terms can be equal. Some are trivial.

I The power graph is null if and only if G is the trivial group
(for the identity is joined to all other vertices).

I The non-generating graph is complete if and only if G is
not 2-generated.

I The commuting graph is equal to the non-generating
graph if and only if G is a minimal non-abelian group.
Such groups were determined by Miller and Moreno in
1904.
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The other cases

Theorem
Let G be a finite group.

I Pow(G) = EPow(G) if and only if G has no subgroup
isomorphic to Cp × Cq where p and q are distinct primes.

I EPow(G) = Com(G) if and only if G has no subgroup
isomorphic to Cp × Cp where p is a prime.

The groups in each of these classes have been determined.
Before explaining this, let me mention another graph associated
with a finite group.
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The Gruenberg–Kegel graph

The Gruenberg–Kegel graph, sometimes called the prime
graph, of G has vertices the prime divisors of |G|, with an edge
joining p and q if G contains an element of order pq.

Gruenberg and Kegel showed that the augmentation ideal of
the integral group ring of G is decomposable if and only if this
graph is disconnected. They gave a structural description of
such groups in an unpublished manuscript; the result was later
published by Gruenberg’s student Williams.

Theorem
Let G be a finite group whose Gruenberg–Kegel graph is disconnected.
Then either
I G is a Frobenius or 2-Frobenius group; or
I G is an extension of a nilpotent π-group by a simple group by a

π-group, where π is the set of primes in the connected
component containing 2.
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EPPO groups

The group G is an EPPO group (“Elements of Prime Power
Order”) if every element of G has prime power order. These
groups were studied by Higman in the 1950s; he determined
the solvable ones. Following the discovery of his infinite family
of simple groups, Suzuki was able to determine the simple
EPPO groups. Subsequently Brandl gave a complete
classification, which was rediscovered by several authors.

Theorem
For a finite group G, the following conditions are equivalent:
I Pow(G) = EPow(G);
I the Gruenberg–Kegel graph of G is a null graph;
I G is an EPPO group.
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EPow(G) = Com(G)

We saw that a group whose enhanced power graph is equal to
its commuting graph has no subgroup Cp × Cp. These groups
can be determined as well. Here is a brief description.

By a theorem of Burnside, the Sylow subgroups of G are all
cyclic or generalized quaternion (the latter only for the prime
2).
I In the cyclic case, using Burnside’s transfer theorem, G is

metacyclic (i.e., has a cyclic normal subgroup with cyclic
quotient).

I If the Sylow 2-subgroups are generalized quaternion, then
using Glauberman’s Z∗-theorem and the
Gorenstein–Walter theorem, G has a normal subgroup N of
odd order; G/N has a unique involution z, and the
quotient by 〈z〉 is a known group.



EPow(G) = Com(G)

We saw that a group whose enhanced power graph is equal to
its commuting graph has no subgroup Cp × Cp. These groups
can be determined as well. Here is a brief description.
By a theorem of Burnside, the Sylow subgroups of G are all
cyclic or generalized quaternion (the latter only for the prime
2).

I In the cyclic case, using Burnside’s transfer theorem, G is
metacyclic (i.e., has a cyclic normal subgroup with cyclic
quotient).

I If the Sylow 2-subgroups are generalized quaternion, then
using Glauberman’s Z∗-theorem and the
Gorenstein–Walter theorem, G has a normal subgroup N of
odd order; G/N has a unique involution z, and the
quotient by 〈z〉 is a known group.



EPow(G) = Com(G)

We saw that a group whose enhanced power graph is equal to
its commuting graph has no subgroup Cp × Cp. These groups
can be determined as well. Here is a brief description.
By a theorem of Burnside, the Sylow subgroups of G are all
cyclic or generalized quaternion (the latter only for the prime
2).
I In the cyclic case, using Burnside’s transfer theorem, G is

metacyclic (i.e., has a cyclic normal subgroup with cyclic
quotient).

I If the Sylow 2-subgroups are generalized quaternion, then
using Glauberman’s Z∗-theorem and the
Gorenstein–Walter theorem, G has a normal subgroup N of
odd order; G/N has a unique involution z, and the
quotient by 〈z〉 is a known group.



EPow(G) = Com(G)

We saw that a group whose enhanced power graph is equal to
its commuting graph has no subgroup Cp × Cp. These groups
can be determined as well. Here is a brief description.
By a theorem of Burnside, the Sylow subgroups of G are all
cyclic or generalized quaternion (the latter only for the prime
2).
I In the cyclic case, using Burnside’s transfer theorem, G is

metacyclic (i.e., has a cyclic normal subgroup with cyclic
quotient).

I If the Sylow 2-subgroups are generalized quaternion, then
using Glauberman’s Z∗-theorem and the
Gorenstein–Walter theorem, G has a normal subgroup N of
odd order; G/N has a unique involution z, and the
quotient by 〈z〉 is a known group.



Approximate equality?

We can ask for generalizations of these results along the
following lines.

Let p be a monotone graph parameter (that is, adding edges to
a graph cannot decrease the value of the parameter). Now for
each consecutive pair of graphs in the hierarchy, we can ask:
for which groups, do the values of p on the corresponding
graphs coincide?
There are plenty of open questions here; the only case to have
been looked at (as far as I know) is the power graph and
enhanced power graph. Again not many results are known.
Recall that these graphs are equal for a group G if and only if
every element of G has prime power order.
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Theorem
I Let ω denote clique number, the size of the maximal complete

subgraph. Then ω(Pow(G)) = ω(EPow(G)) if and only if the
largest order of an element of G is a prime power.

I Let µ denote matching number, the maximum number of
pairwise disjoint edges. Then every finite group G satisfies
µ(Pow(G)) = µ(EPow(G)).

One slightly surprising thing about the second result is that we
do not have a formula for the matching number of Pow(G) for
an arbitrary group G. The theorem is proved by showing that,
given any matching in EPow(G), we can find another matching
of the same size which has fewer edges which don’t belong to
Pow(G).
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An example

We do not expect to be able to classify groups in which the
largest order of an element is a prime power. Nevertheless, it is
an interesting question.

Theorem
Let q be a prime power, and G = PGL(2, q). Then
ω(Pow(G)) = ω(EPow(G)) if and only if one of
I q is a Mersenne prime;
I q + 1 is a Fermat prime;
I q = 8.

For the largest order of an element of G is q + 1. If q and q + 1
are both proper powers, then q = 8, by the Catalan conjecture
(proved fairly recently by Mihăilescu).
Otherwise either q or q + 1 is prime, giving the remaining cases.
So our problem includes the determination of all Fermat and
Mersenne primes!
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Differences

For each consecutive pair of graphs in the hierarchy, we can
ask: If they are not equal, what can be said about their
difference? For example, is it connected?

This has been very little studied, apart from the difference
between the non-generating graph and the commuting graph,
where Saul Freedman has detailed results, specifically about its
connectedness and diameter.
I will look at one further property to illustrate the benefit of
treating the graphs as a hierarchy.
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Universality

A class of finite graphs is universal if every finite graph can be
embedded as induced subgraph in a graph in that class.

The power graphs of finite groups do not form a universal
class. For these graphs are comparability graphs of partial
orders, and hence are perfect; in particular, they do not contain
odd cycles of length greater than 3 or their complements. But
this is the only restriction:

Theorem
If Γ is the comparability graph of a finite partial order, then there is a
finite group G such that Γ is isomorphic to an induced subgraph of
Pow(G).
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By contrast we have:

Theorem
The classes of enhanced power graphs, commuting graphs, or
non-generating graphs of finite groups are universal.
But using our hierarchy, we can strengthen the last result.
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Theorem
Suppose that the edges of a finite complete graph are coloured blue,
yellow and white in any manner. Then the vertex set can be embedded
into a finite group G such that
I the blue edges belong to EPow(G);

I the white edges belong to Com(G) but not to EPow(G);
I the yellow edges do not belong to Com(G).

This gives us several universality results at once:
I ignoring the yellow-white distinction, enhanced power

graphs form a universal class;
I ignoring the blue-white distinction, commuting graphs

form a universal class;
I ignoring the blue-yellow distinction, the class of graphs of

the form (Com− EPow)(G) is universal.
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A final topic

There is much much more that I haven’t talked about, and
many many open problems. Please see the references, or email
me if you want to discuss some of this or work on some open
problems.

I will finish with a topic from the sheaf of results that have been
proved as a result of the research discussion group; this has
some cute mathematics . . .
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Clique number of the power graph

As a final topic, there is a sense in which the enhanced power
graph is not much larger than the power graph. For example,
while ω(Pow(G)) ≤ ω(EPow(G)), it is true the ω(EPow(G)) is
bounded above by a function of ω(Pow(G)). This can be seen
by looking more closely at the clique number of Pow(G).

Any edge of Pow(G) is contained in a cyclic subgroup; and if
every pair of vertices of a set S in a group are contained in a
cyclic subgroup, then S is contained in a cyclic subgroup. So
ω(G) is equal to the maximum of ω(C) over all cyclic
subgroups C of G.
Similarly, ω(EPow(G)) is equal to the order of the largest cyclic
subgroup of G.
So it suffices to look at cyclic groups.
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In a cyclic group

Let f (n) be the clique number of Pow(Cn), where Cn is the
cyclic group of order n.

Then f (n) is given by the recurrence
I f (1) = 1;
I for n > 1, f (n) = φ(n) + f (n/p), where φ is Euler’s totient

function and p is the smallest divisor of n.
From this it follows easily that f (n) ≤ 3φ(n). Hence n is
bounded above by cm log log m, where m = f (n); and the same
bound holds for the clique numbers m and n of the power
graph and enhanced power graph of an arbitrary group.
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In fact,
lim sup f (n)/φ(n) = 2.6481017597 . . . ,

where the constant on the right is

∑
k≥0

k

∏
i=1

1
pi − 1

,

where p1, p2, . . . are the primes in order.

This suggests several questions, such as
I is this constant rational, algebraic or transcendental?
I what other numbers are limit points of the set
{f (n)/φ(n) : n ∈N}?
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This suggests several questions, such as
I is this constant rational, algebraic or transcendental?
I what other numbers are limit points of the set
{f (n)/φ(n) : n ∈N}?
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