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I’ll know my song well before I start singing

Bob Dylan



About 15 years ago, João tempted me to put a toe in the ocean
of semigroup theory with some very attractive problems.

He claimed that, in the past, semigroup theorists believed their
job was done if they reduced the question to one in group
theory, and they could just hand it over to the group theorists;
but it would be much more productive if the two subjects could
have a dialogue.
I am going to tell you about some aspects of this.
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Permutation groups

I begin with a few basic definitions about permutation groups.

Let G be a permutation group on a set Ω, that is, a subgroup of
the symmetric group Sym(Ω). We denote the image of a point
α ∈ Ω by a permutation g ∈ G by αg. (Note that a more general
concept is that of an action of G on Ω, a homomorphism from G
to Sym(Ω); since the image of an action is a permutation group,
all these definitions immediately transfer to group actions.)
We say G is transitive if, for all α, β ∈ Ω, there is an element
g ∈ G satisfying αg = β. If G is transitive, then we say it is
primitive if the only G-invariant partitions of Ω are the trivial
ones (the partition into singletons, and the partition with a
single part).
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Higman’s Theorem

Primitivity is possibly the most important concept in
permutation group theory, and there are a number of
conditions equivalent to it; for example, a transitive group is
primitive if the point stabiliser is a maximal proper subgroup
of G. Probably the most important of these is the theorem of
Donald Higman:

Theorem (Higman’s Theorem)

The transitive permutation group G on Ω is primitive if and only if
everyxnon-trivial graph (or digraph) on Ω which is G-invariant is
connected.
Note that we can construct G-invariant graphs by taking orbits
of G on pairs of elements of Ω as edges. These are the orbital
(di)graphs.
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Multiple transitivity

Let t be a positive integer not exceeding n. We say G is
t-transitive if its induced action on t-tuples of distinct elements
of Ω is transitive; and G is t-homogeneous if the induced action
on t-element subsets of Ω is transitive.

Clearly t-transitivity implies t-homogeneity. If 5 ≤ t ≤ n/2, a
beautiful theorem of Livingstone and Wagner asserts that the
converse is true. All t-homogeneous but not t-transitive groups
for t = 2, 3, 4 were found by Kantor (before CFSG).
The classification of t-transitive groups for t ≥ 2 had to wait for
CFSG (the Classification of Finite Simple Groups before it could
be completed; but now we have a complete list of such groups.



Multiple transitivity

Let t be a positive integer not exceeding n. We say G is
t-transitive if its induced action on t-tuples of distinct elements
of Ω is transitive; and G is t-homogeneous if the induced action
on t-element subsets of Ω is transitive.
Clearly t-transitivity implies t-homogeneity. If 5 ≤ t ≤ n/2, a
beautiful theorem of Livingstone and Wagner asserts that the
converse is true. All t-homogeneous but not t-transitive groups
for t = 2, 3, 4 were found by Kantor (before CFSG).

The classification of t-transitive groups for t ≥ 2 had to wait for
CFSG (the Classification of Finite Simple Groups before it could
be completed; but now we have a complete list of such groups.



Multiple transitivity

Let t be a positive integer not exceeding n. We say G is
t-transitive if its induced action on t-tuples of distinct elements
of Ω is transitive; and G is t-homogeneous if the induced action
on t-element subsets of Ω is transitive.
Clearly t-transitivity implies t-homogeneity. If 5 ≤ t ≤ n/2, a
beautiful theorem of Livingstone and Wagner asserts that the
converse is true. All t-homogeneous but not t-transitive groups
for t = 2, 3, 4 were found by Kantor (before CFSG).
The classification of t-transitive groups for t ≥ 2 had to wait for
CFSG (the Classification of Finite Simple Groups before it could
be completed; but now we have a complete list of such groups.



A general scheme

We will need to define several further properties of
permutation groups. Here is a general scheme for such
definitions, which handles most cases we need.

Let C be a class of relational or combinatorial objects. A
member of C is said to be trivial if it is invariant under all
permutations of its domain.
Now let G be a permutation group on a set Ω. We say that G is
▶ C-free if the only C-structures on Ω invariant under G are

the trivial ones;
▶ C-closed if any permutation of Ω which preserves all

G-invariant C-structures belongs to G,
A virtue of this definition is that, for any class C, the class of
C-free permutation groups is closed upwards.
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Playing the game

We will see several examples. However, the way to play this
game is not to think up an arbitrary class C and examine the
C-free or C-closed permutation groups. Rather, we have a
property of permutation groups we want to study;
understanding the C-free or C-closed structures for an
appropriate class is likely to help the investigation. Even better
are cases when we can build arbitrary permutation groups
from the C-free groups.

Note that if G is not C-free then it preserves a non-trivial
C-structure. The nicest cases are those where we can use this to
get a reduction for G, and understand it in terms of smaller
permutation groups. This is the case for transitivity and
primitivity, for example.
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How it works

Let C be the class of “subsets”: a C-object is a subset of Ω. The
only subsets invariant under the symmetric group are the
empty set and Ω; so G is C-free if and only if it is transitive.

Again, let C be the class of “directed graphs”. A directed graph
invariant under the symmetric group is either null or complete;
so, if G is C-free, then any pair of distinct points can be mapped
to any other pair by an element of G (otherwise an orbit of G
would be a digraph which is neither complete nor null); in
other words, G is 2-transitive.
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Examples

Here are some examples. We have met the first few, and will
see the basic property next, and the synchronizing property in
the next lecture.

C C-free
Subsets Transitive

Partitions Primitive
Graphs 2-homogeneous

Digraphs 2-transitive
Hamming graphs Basic

Association schemes AS-free
Weakly perfect graphs Synchronizing

Another class C we have just begun to study consists of poset
block structures, where the C-closed groups are the generalised
wreath products.
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Two challenges

For AI/ML specialists:

Question
There are zillions of interesting classes of structures on sets. Which
ones give rise to interesting classes of permutation groups? Where
should we look for them?

For semigroup theorists:

Question
Can we define interesting classes of (partial) transformation monoids
in this way?
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Reductions

I mentioned some reductions earlier: here is a bit more detail.
These often reduce the study of a permutation group to groups
of smaller degree, or those with a very specific structure, and
eventually pave the way to applications of CFSG.

If G is intransitive, then it has more than one orbit, and induces
a transitive group on each orbit. So G is embedded in a direct
product of transitive groups.
If G is transitive but imprimitive, it preserves a partition, and is
embedded in the wreath product H ≀ K, where H is the group
induced on a block of the partition by its setwise stabiliser, and
K the group induced on the set of parts of the partition. This is
the imprimitive action of the wreath product.
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Hamming graphs and basic groups

Let m, q be integers greater than 1. The Hamming graph
H(m, q) is the graph whose vertices are all words of length m
over an alphabet of size q (so it has qm vertices. A primitive
group which preserves a Hamming graph is contained in the
wreath product of the group (of degree q) induced on the
symbols occurring in a given position by the stabiliser of that
position in G and the group of permutations on the set of
coordinate positions induced by G (of degree m).

A primitive group is basic if it preserves no Hamming graph
with m, q > 1. Thus, a group which is primitive but not basic is
embeddable in a wreath product (in its product action).
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Two special types of group

Let V be a finite vector space. The affine group AGL(V) is the
group of permutations of V generated by translations and
invertible linear maps. (It is the semidirect product of the
abelian translation group T and the general linear group
GL(V).)

A subgroup of AGL(V) containing T is the semidirect product
of T with a subgroup H of GL(V). It is necessarily transitive,
since T is; it is primitive if and only if H is an irreducible linear
group; and it is basic if and only if H is a primitive linear group,
one which preserves no non-trivial direct sum decomposition
of V.
I will not give the rather involved definition of a diagonal
group here; suffice to say that the diagonal group D(H, m)
depends on a group H and a positive integer m; it has degree
|H|m and has a normal subgroup Hm+1 acting on the cosets of a
diagonal subgroup, the quotient contained in the group
generated by Aut(H) and the symmetric group Sm+1.
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The O’Nan–Scott Theorem

This theorem was proved by O’Nan and Scott (independently)
in 1979, and improved by Aschbacher, Kovács, and others.
What I state here is only a part of the theorem, but will be
adequate for our needs.

A group G is almost simple if S ≤ G ≤ Aut(S) for some
non-abelian finite simple group S. (Note that S is embedded in
Aut(S) as the group of inner automorphisms.)

Theorem (O’Nan–Scott Theorem)

A basic primitive group is affine, diagonal or almost simple.
Since affine groups preserve affine spaces, and diagonal groups
preserve structures called diagonal semilattices, we can say
that a permutation group which preserves no non-trivial
subset, partition, Hamming graph, affine space, or diagonal
semilattice is almost simple.
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Finite simple groups
The Classification of Finite Simple Groups is probably the
biggest theorem ever proved, involving thousands of pages by
hundreds of mathematicians. However, the result is easy to
state:

Theorem (CFSG)

A non-abelian finite simple group is one of the following:
▶ an alternating group An, for n ≥ 5;
▶ a group of Lie type (these are central quotients of specific linear

groups over finite fields);
▶ one of the 26 sporadic groups.

It follows from CFSG that, if S is one of these groups, then
Aut(S)/S is very small (and in any case soluble). The
combined efforts of many mathematicians has led to a good
understanding of simple (and almost simple) groups, such as
knowledge of their maximal subgroups and linear
representations.
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Applications

The classification of 2-transitive groups follows from this. A
2-transitive group is clearly primitive and basic, and it is not
hard to show that diagonal groups cannot be 2-transitive. So
these groups are affine or almost simple; and using knowledge
of the almost simple groups and their representations, a
complete list can be found. (In fact, much less than the full
strength of O’Nan–Scott is needed here; the reduction is due to
Burnside.)

More generally, Wielandt intruduced the class of 3
2 -transitive

groups, those which are transitive and the stabiliser of a point α
has all remaining orbits of the same size. (This class is not
upward-closed so cannot be included in our general scheme.)
Wielandt showed that a 3

2 -transitive group is either primitive or
a Frobenius group, a group in which all 2-point stabilisers are
trivial. Any Frobenius group is 3

2 -transitive; the primitive ones
have been classified, using CFSG.
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Low in the hierarchy

The properties we have examined so far are almost all at least
as strong as primitivity. I want to conclude with several
properties which are weaker, which I have investigated with
Marina Anagnostopoulou-Merkouri and, in part, with Enoch
Suleiman and Rosemary Bailey.

I begin with a property which has been studied extensively by
Cheryl Praeger and others. A permutation group G on Ω is
quasiprimitive if every non-trivial normal subgroup of G is
transitive. Since the orbit partition of a normal subgroup is
G-invariant, a primitive group is quasi-primitive.
Many results, including the O’Nan–Scott theorem, have been
extended from primitive to quasiprimitive groups.
Peter Neumann pointed out that in the Second Memoir, Galois
sometimes confused the notions of primitivity and
quasiprimitivity.
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Pre-primitivity

Suppose that P and Q are permutation group properties such
that P implies Q. The philosophy of what follows is to define a
property “pre-P” such that it is independent of Q but together
with Q it is equivalent to P. (Note that this is not well-defined!)

We say that the transitive group G is pre-primitive if every
G-invariant partition is the orbit partition of a subgroup of G.
This does what is required: Neither of pre-primitivity and
quasi-primitivity implies the other, but together they are
equivalent to primitivity.
We have various results about such groups, including the fact
that a wreath product of transitive groups is pre-primitive if
and only if the factors are.
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Invariant partitions

The set of partitions of Ω forms a lattice: the meet of two
partitions P and Q is the partition whose parts are all
non-empty intersections of parts of P and Q, and the join is the
partition into connected components of the graph in which two
points are adjacent if and only if they are in the same part of
either P or Q.

The greatest element is the partition with a single part Ω, and
the least is the partition into singletons.
In addition, a partition is uniform if all parts have the same
size, and two partitions commute if the corresponding
equivalence relations do.
Statisticians define an orthogonal block structure to be a
sublattice of the partition lattice consisting of pairwise
commuting uniform partitions (containing the two trivial
partitions). Any OBS is a modular lattice; a poset block
structure is a distributive OBS.
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OB and PB permutation groups

A transitive permutation group G has the OB property (resp.,
the PB property) if the lattice of G-invariant partitions is an
OBS (resp. a PBS). Note that the G-invariant partitions always
form a lattice, and if G is transitive then they are all uniform.

Suppose that G is pre-primitive: that is, any invariant
permutation is the orbit partition of a subgroup. Without loss,
the subgroup is normal. Hence the partitions commute, and so
form an OBS. Thus, pre-primitivity implies the OB property.
Of course, the PB property also implies the OB property; but
we don’t know a relation between PB and pre-primitivity.
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Generalized wreath product
PB groups are related to another concept, which I cannot
describe in detail. It is well-known that a finite distributive
lattice is the lattice of down-sets in a finite poset. There is a
concept of generalized wreath product defined by a poset with
a permutation group at each element.

For example, there are two 2-element posets. Suppose that
groups H and K are given at the two points. If the poset is an
antichain, the GWP is the direct product; if it is a chain, with H
above K, the GWP is the wreath product K ≀ H.
The following extends well-known results about direct and
wreath products:

Theorem
A transitive group with the PB property is naturally embedded in a
generalized wreath product of symmetric groups.
Indeed, we expect to be able to replace the symmetric group by
appropriate subgroups induced by the action of G; but this is
work in progress.
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