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“When I use a word”, Humpty Dumpty said, in rather a
scornful tone, “it means just what I choose it to mean—
neither more nore less.”

Lewis Carroll



Synchronizing automata

This topic arose first in automata theory in the 1960s.

Our automata are extremely simple machines. They read a
symbol from a string over an alphabet, change state according
to a deterministic rule, and repeat the procedure.
Imagine you are lost in a dungeon which has a number of
rooms, joined by passages. These are identified by red and blue
doors. Once you have gone through a door, you cannot return.
You have a map of the dungeon, marking the room which has
the exit door, but you don’t know where you are. So if you can
take a sequence of red and blue doors which lead to the exit
room from any possible starting point, you can escape.
So you want to decide from the map whether such a sequence
exists, and if so, find one.
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From dungeon to automaton

The dungeon is an automaton; the rooms are the states, and the
alphabet has two letters red and blue. Assuming that the
dungeon is connected, if you can find a sequence of moves
which brings you to a known state, then you can use the map
to navigate to the exit.

So we call an automaton synchronizing if there is a word in the
alphabet (called a reset word) with the property that, after
reading the word, the machine is in a known state. There are
many applications: aligning objects on a conveyor belt in a
factory; making a machine safe for repairs; communicating
with a satellite which has just passed behind the moon.
There is a polynomial-time algorithm to decide whether an
automaton is synchronizing. (It is synchronizing if and only if,
given any two states, there is a word which maps them to the
same place.)
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So BRRRBRRRB is a reset word (and is in fact the shortest).
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The Černý conjecture

Given a synchronizing automaton, the question arises: what is
the smallest reset word? This is harder. The infamous Černý
conjecture, one of the oldest open problems in automata theory,
asserts that any n-state synchronizing automaton has a reset
word of length at most (n − 1)2 (the previous example
generalised). The best known upper bound is cn3.

I am not going to discuss the Černý conjecture, but will move
in a different direction. Note that any symbol in the alphabet of
an automaton corresponds to a map from the set Ω of states to
itself. Moreover, reading a word corresponds to composing the
maps corresponding to the symbols. Moreover, the identity
transformation is produced by the empty word. So the set of
transformations an automaton can generate is a monoid (a
semigroup with identity).
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Rank, image and kernel

The rank of a transformation is the cardinality of its image. So
the Černý conjecture can be stated in a different way: Given a
transformation monoid on a set of cardinality n which contains
an element of rank 1, and given a generating set for the
monoid, what is the shortest word in the generators which
evaluates to a transformation of rank 1? The conjecture asserts
that there is such a word of length at most (n − 1)2.

The image of a map f is defined as usual; the kernel is the
partition induced by the equivalence relation α ≡ β if and only
if αf = βf . Note that the rank, which is the cardinality of the
image, is also the cardinality (that is, the number of parts) of
the kernel.
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Image and kernel

A key observation I will use several times is the following.

Proposition

Let S be a transformation semigroup on Ω. Suppose that s is an
element of S of minimal rank. Then, for any t ∈ S, elements of Im(s)
lie in distinct classes of Ker(t).

This is clear since, if not, then rank(st) < rank(s). In particular,
if t also has minimal rank, then Im(s) is a transversal for Ker(t).
Note that a product of transformations s and t is a permutation
if and only if s and t are permutations. Thus, the permutations
in a transformation monoid S form a permutation group G, the
group of units of S. Our general theme is the question: how
does the structure of the group of units affect the structure of a
transformation monoid?
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Synchronization and groups

A transformation monoid is synchronizing if it contains an
element of rank 1. Thus, a permutation group cannot be
synchronizing (unless it is the trivial group on a set of size 1).
So, following Humpty Dumpty, we extend the usage of the
term with a slightly different meaning.

Let G be a permutation group on Ω. We say that G
synchronizes a transformation t if the monoid ⟨G, t⟩ is
synchronizing. If G synchronizes every non-permutation of Ω,
we say that G is a synchronizing permutation group.
The main question in this lecture is:

Question
Which permutation groups are synchronizing?
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Section-regular partitions
The first translation of the synchronizing property is due to
Peter Neumann.

Proposition

Suppose that s has minimum rank in a transformation monoid S with
unit group G. Then, for every element g ∈ G, Im(s)g is a transversal
to Ker(s).
A partition P of Ω is section-regular for a permutation group G
if there is a set A ⊆ Ω such that Ag is a transversal for P for all
g ∈ G.

Proposition

A permutation group is non-synchronizing if and only if it has a
nontrivial section-regular partition.
If P is section-regular with witness A, then the map s with
kernel P and image A is not synchronized by G. The converse is
proved similarly, taking s to be an element of minimal rank
(greater than 1) in a monoid containing G.



Section-regular partitions
The first translation of the synchronizing property is due to
Peter Neumann.

Proposition

Suppose that s has minimum rank in a transformation monoid S with
unit group G. Then, for every element g ∈ G, Im(s)g is a transversal
to Ker(s).

A partition P of Ω is section-regular for a permutation group G
if there is a set A ⊆ Ω such that Ag is a transversal for P for all
g ∈ G.

Proposition

A permutation group is non-synchronizing if and only if it has a
nontrivial section-regular partition.
If P is section-regular with witness A, then the map s with
kernel P and image A is not synchronized by G. The converse is
proved similarly, taking s to be an element of minimal rank
(greater than 1) in a monoid containing G.



Section-regular partitions
The first translation of the synchronizing property is due to
Peter Neumann.

Proposition

Suppose that s has minimum rank in a transformation monoid S with
unit group G. Then, for every element g ∈ G, Im(s)g is a transversal
to Ker(s).
A partition P of Ω is section-regular for a permutation group G
if there is a set A ⊆ Ω such that Ag is a transversal for P for all
g ∈ G.

Proposition

A permutation group is non-synchronizing if and only if it has a
nontrivial section-regular partition.
If P is section-regular with witness A, then the map s with
kernel P and image A is not synchronized by G. The converse is
proved similarly, taking s to be an element of minimal rank
(greater than 1) in a monoid containing G.



Section-regular partitions
The first translation of the synchronizing property is due to
Peter Neumann.

Proposition

Suppose that s has minimum rank in a transformation monoid S with
unit group G. Then, for every element g ∈ G, Im(s)g is a transversal
to Ker(s).
A partition P of Ω is section-regular for a permutation group G
if there is a set A ⊆ Ω such that Ag is a transversal for P for all
g ∈ G.

Proposition

A permutation group is non-synchronizing if and only if it has a
nontrivial section-regular partition.

If P is section-regular with witness A, then the map s with
kernel P and image A is not synchronized by G. The converse is
proved similarly, taking s to be an element of minimal rank
(greater than 1) in a monoid containing G.



Section-regular partitions
The first translation of the synchronizing property is due to
Peter Neumann.

Proposition

Suppose that s has minimum rank in a transformation monoid S with
unit group G. Then, for every element g ∈ G, Im(s)g is a transversal
to Ker(s).
A partition P of Ω is section-regular for a permutation group G
if there is a set A ⊆ Ω such that Ag is a transversal for P for all
g ∈ G.

Proposition

A permutation group is non-synchronizing if and only if it has a
nontrivial section-regular partition.
If P is section-regular with witness A, then the map s with
kernel P and image A is not synchronized by G. The converse is
proved similarly, taking s to be an element of minimal rank
(greater than 1) in a monoid containing G.



Graphs and homomorphisms

Now I give a more convenient criterion for
non-synchronization.

Graphs here will be simple undirected graphs. The vertex and
edge sets of a graph Γ are denoted by VΓ and EΓ.
A homomorphism from Γ to ∆ is a map θ from VΓ to V∆
mapping EΓ into E∆. (The action on nonedges is not specified:
a nonedge may map to a nonedge, or to an edge, or collapse to
a single vertex.) As usual a homomorphism from Γ to itself is
an endomorphism of Γ.
The endomorphisms of Γ form a transformation monoid on VΓ,
with unit group Aut(Γ). Since homomorphisms cannot destroy
edges, we see that, if Γ is not the null graph, then Aut(Γ) is
non-synchronizing.
We will see that there is a converse as well.
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Cliques and colourings

A clique of Γ is a complete subgraph, hence is the image of a
homomorphism Km → Γ (where Km is the complete graph on m
vertices). The clique number of Γ, denoted by ω(Γ), is the size
of the largest clique in Γ.

A proper colouring of Γ assigns colours to the vertices in such a
way that adjacent vertices get different colours. In other words,
it is a homomorphism Γ → Kl for some l. The minimum
number of colours in a proper colouring is the chromatic
number of Γ, denoted by χ(Γ).
The vertices of a clique all get different colours; so
χ(Γ) ≥ ω(Γ). Equality holds if and only if there are
homomorphisms in both directions between Γ and Km for some
m. Such a graph is called weakly perfect.
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A test for synchronization

Theorem
A permutation group is non-synchronizing if and only if it is
contained in the automorphism group of a non-null weakly perfect
graph.

In the language introduced in the first lecture, G is
synchronizing if and only if it is C-free, where C is the class of
weakly perfect graphs.
We have seen the reverse direction in the theorem. For the
converse, suppose that S = ⟨G, t⟩ contains no element of rank 1.
Form a graph Γ by joining α to β if and only if no element s ∈ S
satisfies αs = βs. Then S ≤ End(Γ). Moreover, if s has
minimum rank in S, then Im(s) is a clique, and s is a proper
colouring, of Γ.
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Consequences

Theorem
▶ A 2-homogeneous group is synchronizing.

▶ A synchronizing group is primitive and basic.

The first holds since a 2-homogeneous group preserves no
non-trivial graph (it is C-free, for the class C of all graphs).
For the second, note that a transitive imprimitive group
preserves a complete multipartite graph with parts of the same
size, while a primitive non-basic group preserves a Hamming
graph; both are weakly perfect. (For the Hamming graph
H(m, q), the set of vertices (x1, . . . , xm) with x2, . . . , xm constant
is a clique of size q. For a colouring, assume that the alphabet is
the integers mod q, and give (x1, . . . , xm) the colour
x1 + · · ·+ xm.)
According to the O’Nan–Scott Theorem, a synchronizing group
must be affine, diagonal or almost simple. We examine these in
turn.
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The first holds since a 2-homogeneous group preserves no
non-trivial graph (it is C-free, for the class C of all graphs).
For the second, note that a transitive imprimitive group
preserves a complete multipartite graph with parts of the same
size, while a primitive non-basic group preserves a Hamming
graph; both are weakly perfect. (For the Hamming graph
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Affine and almost simple

In each of these classes, some basic groups are synchronizing
and some are not. I will not discuss these in detail, but just give
one example.

One of the best-known examples of a basic but not
2-homogeneous group is the symmetric group Sm acting on the
n = (m

2) 2-element subsets of {1, . . . , m}.
On the next slide I will show you that this group is
synchronizing if and only if m is odd.
Mohammed Aljohani, John Bamberg and I have a conjectured
generalisation to Sm acting on k-sets, involving Peter Keevash’s
construction of t-designs.
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Sm acting on 2-sets preserves the triangular graph, in which
two 2-sets are joined if they have non-empty intersection.

For m ≥ 5, a maximal clique in this graph has size m − 1, and is
the star consisting of all 2-sets containing a fixed point. On the
other hand, the sets in a colour class have size at most ⌊m/2⌋,
since they must be pairwise disjoint; so there must be at least
m(m − 1)/(2⌊m/2⌋) colours; this number is m − 1 if m is even,
m if m is odd. It is easy to show that this is the chromatic
number of the graph. So the graph is weakly perfect if and only
if m is even.
It is also easy to show that the complementary graph is never
weakly perfect. So the claimed result holds.



Sm acting on 2-sets preserves the triangular graph, in which
two 2-sets are joined if they have non-empty intersection.
For m ≥ 5, a maximal clique in this graph has size m − 1, and is
the star consisting of all 2-sets containing a fixed point. On the
other hand, the sets in a colour class have size at most ⌊m/2⌋,
since they must be pairwise disjoint; so there must be at least
m(m − 1)/(2⌊m/2⌋) colours; this number is m − 1 if m is even,
m if m is odd. It is easy to show that this is the chromatic
number of the graph. So the graph is weakly perfect if and only
if m is even.

It is also easy to show that the complementary graph is never
weakly perfect. So the claimed result holds.



Sm acting on 2-sets preserves the triangular graph, in which
two 2-sets are joined if they have non-empty intersection.
For m ≥ 5, a maximal clique in this graph has size m − 1, and is
the star consisting of all 2-sets containing a fixed point. On the
other hand, the sets in a colour class have size at most ⌊m/2⌋,
since they must be pairwise disjoint; so there must be at least
m(m − 1)/(2⌊m/2⌋) colours; this number is m − 1 if m is even,
m if m is odd. It is easy to show that this is the chromatic
number of the graph. So the graph is weakly perfect if and only
if m is even.
It is also easy to show that the complementary graph is never
weakly perfect. So the claimed result holds.



Diagonal groups

I mentioned the diagonal groups D(T, m) in the first lecture.
They are primitive (and basic) if and only if T is non-abelian
simple. Here I will discuss just m = 1 and m = 2, but explain
how the result extends to all m.

The group D(T, 1) is the group of permutations of T generated
by left and right translations, automorphisms, and the
inversion map x 7→ x−1.
This group may or may not be synchronizing. If T has an exact
factorisation, then D(T, 1) is non-synchronizing.
Recently, John Bamberg, Michael Giudici, Jesse Lansdown and
Gordon Royle showed that, for the simple groups
T = PSL(2, 13) and PSL(2, 17), the diagonal group is
synchronizing. These were the first synchronizing diagonal
groups found.
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Transversals and orthogonal mates
A transversal of a Latin square is a set of cells, one in each row,
one in each column, and one containing each letter.

e a b c
a e c b
b c e a
c b a e

In this case we can partition the cells into transversals:

e a b c
a e c b
b c e a
c b a e

Regarding the colours as an alphabet we see a second Latin
square which is orthogonal to the first square, in the sense that
each combination of letter and colour occurs precisely once.
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Latin square graphs and Cayley tables

From a Latin square, we get a Latin square graph whose
vertices are the q2 cells, two vertices joined if they lie in the
same row or column or contain the same letter.

The Cayley table of a group T is a Latin square. If |T| > 4, then
the automorphism group of the corresponding Latin square
graph is the diagonal group D(T, 2).
If a Latin square has order q ≥ 4, its Latin square graph has
clique number q. (Any row, column or letter defines a q-clique;
a clique not contained in one of these has size at most 4.)
If it has an orthogonal mate, the entries in this mate define a
proper colouring of the Latin square graph with q colours.
So a Latin square graph is weakly perfect if and only if the
square has an orthogonal mate.
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The Hall–Paige conjecture

So to decide whether D(T, 2) is synchronizing, we need to
know whether the Cayley table of T has an orthogonal mate.

In 1955, Marshall Hall and Lowell Paige conjectured that the
Cayley table of T has an orthogonal mate if and only if the
Sylow 2-subgroups of T are either trivial or non-cyclic. They
proved that this condition is necessary.
As an exercise, prove that the Cayley table of a cyclic group of
even order n has no orthogonal mate.
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The proof of the conjecture

In 2009, Stewart Wilcox reduced the conjecture to the case of
non-abelian simple groups (these all have non-cyclic Sylow
subgroups), and proved it for groups of Lie type, except the
Tits group (alternating groups were done by Hall and Paige).
Then Tony Evans dealt with the remaining case and the
sporadic groups with one exception (the Janko group J4). The
final case was done (but not published) by John Bray.

So the Hall–Paige conjecture is true.
Using this, and the notion of graph homomorphism, Bray, Cai,
Spiga, Zhang, and I showed, by induction:

Theorem
For every m > 2 and every non-abelian simple group T, the diagonal
group D(T, m) is non-synchronizing.
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