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You say I am repeating
Something I have said before. I shall say it again.
Shall I say it again?

T. S. Eliot



Where are we going?
In the last lecture, we considered whether monoids of the form
⟨G, t⟩ are synchronizing for any non-permutation t. I didn’t
clearly explain why we just added one non-permutation; there
are several reasons, for one the hope that we could proceed by
induction.

It has to be said that synchronization is not the most significant
property of finite semigroups. Semigroup theorists will
propose other properties such as regularity and idempotent
generation, which we will examine in this lecture. I will not
justify their importance.
A semigroup S is regular if every a ∈ S has a quasi-inverse
b ∈ S such that aba = a (and we may assume, without loss, that
also bab = b). An idempotent is an element e satisfying e2 = e;
we say S is idempotent-generated if it is generated by its
idempotents.
Note that if aba = a then ab and ba are idempotents; so
regularity implies the existence of idempotents, and
idempotent-generation is stronger.
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A nice theorem

The first thing to notice is that the analogue of our
synchronization question was answered in 2011 by João
Araújo, James Mitchell and Csaba Schneider:

Theorem
Let G be a permutation group on Ω, with |Ω| = n.
▶ ⟨G, t⟩ is regular for any non-permutation t if and only if either G

is Sym(Ω) or Alt(Ω), or G is one of nine specific permutation
groups with n = 5, 6, 7, 8 or 9.

▶ ⟨G, t⟩ \ G is idempotent-generated for any non-permutation t if
and only if either G is Sym(Ω) or Alt(Ω), or G is one of three
specific groups of degrees 5 or 6.

In the second statement, we remove elements of G since
non-trivial permutations cannot be products of idempotents.
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Set-transitive permutation groups

This result reminded me of a theorem with an interesting
history. A permutation group G on Ω is said to be set-transitive
if, for any two subsets of Ω of the same size, there is an element
of G carrying the first to the second. In his book on
permutation groups, Wielandt attributes the classification of
these groups to Bercov. But also von Neumann and
Morgenstern, in their pioneering book on game theory, stated
the classification problem, and in the second edition asserted
that it had been solved by Chevalley.

Theorem
Let G be a set-transitive permutation group on Ω, with |Ω| = n.
Then either G is Sym(Ω) or Alt(Ω), or G is one of four specific
groups with n = 5, 6 or 9.
We note that this theorem long predates CFSG.
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A harder problem

So we need to make our original question more interesting, and
the history of permutation groups gives a suggestion for how
to do this.

In the first lecture, I discussed k-homogeneous permutation
groups (those whose induced action on the set of k-element
subsets of the domain is transitive). We saw that, for
2 ≤ k ≤ n/2, these groups were shown to be k-transitive with
known exceptions for k = 2, 3 or 4, by the Livingstone–Wagner
theorem and follow-up results of Kantor; then the CFSG allows
us to determine the k-transitive groups.
In particular, the only k-transitive groups with 6 ≤ k ≤ |Ω|/2
are Sym(Ω) and Alt(Ω); for k = 5 there are additionally two
Mathieu groups of degrees n = 12 and 24, and for k = 4 two
further Mathieu groups with n = 11 and 23. For k = 2 or 3
there are infinitely many groups; but all are known.
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In our situation . . .

So the question about “all subsets” was extended to the same
question for “all subsets of size k”. Similarly, in our problem,
we can extend “all non-permutations” to “all transformations
of rank k”.

So the first version reads:

Question
For which permutation groups G on Ω is it true that, for given k with
1 < k < n,
▶ if t is any map of rank k, then ⟨G, t⟩ is regular; or
▶ if t is any map of rank k, then ⟨G, t⟩ \ G is

idempotent-generated?

The basic strategy is to reformulate the hypotheses in a way
which somehow resembles k-homogeneity.
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The k-universal transversal property

A permutation group G on Ω is said to have the k-universal
transversal property, or k-ut for short (where 1 ≤ k ≤ n − 1) if,
given any k-subset A and k-partition P of Ω, there is an element
g ∈ G mapping A to a transversal for P.

Proposition

The permutation group G has the property that ⟨G, t⟩ is regular for
all maps t of rank k if and only if G has the k-universal transversal
property.
This is exactly the kind of reformulation we are looking for, and
its study involves interesting combinatorics and also reveals
parallels to the Livingstone–Wagner theorem.

But we have to take quite a journey to get there.
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k-ut and regularity

It is not hard to prove that, if G has the k-ut and t has rank k,
then t has a quasi-inverse in S = ⟨G, t⟩.

Take g ∈ G mapping Im(t) to a transversal for Ker(t). Then gt
induces a permutation of Im(t), and so some power of it (say
(gt)m) is the identity on Im(t); then t(gt)m = t. (Note in passing
that (gt)m is an idempotent.)
So if we knew that every element of rank at most k in ⟨G, t⟩ had
a quasi-inverse, we would be done. In other words, we have to
prove that k-ut implies (k − 1)-ut (for k ≤ n/2), and use
induction.
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Going down

Livingstone and Wagner are our guides. Their first theorem
stated that, if k ≤ n/2 and G is k-homogeneous, then G is
(k − 1)-homogeneous.

Their proof used facts about character theory of symmetric
groups. Soon after, Wielandt found a number-theoretic proof
and Kantor a combinatorial proof.
We need to use consequences of CFSG.
I make one observation here.

Proposition

The 2-ut property is equivalent to primitivity.
For let Γ be a G-invariant graph, and A an edge. If G has 2-ut,
then for any 2-part partition, there is an image of A under G
having one point in each part. Hence Γ is connected, and the
result follows from Higman’s theorem.
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Going down, 2

We say that a permutation group G is (l, k) homogeneous (for
l < k) if given any l-set A and k-set B, G contains an element
mapping A to a subset of B.

Now k-ut implies (k − 1, k)-homogeneous. For let B be a k-set
and P a partition whose parts are the singletons of a (k − 1)-set
A and a single part containing all the rest; let g map A to a
transversal to P. Then g−1 maps B to a subset of A.
Now we classify (k − 1, k)-homogeneous groups; use
combinatorics (including Ramsey’s theorem) to show that such
a group is 2-homogeneous (at least for k ≥ 3) with a few known
exceptions, and then appeal to the classification of such groups.
Once they are all known, it is only necessary to check that they
all have (k − 1)-ut, and we are done.



Going down, 2

We say that a permutation group G is (l, k) homogeneous (for
l < k) if given any l-set A and k-set B, G contains an element
mapping A to a subset of B.
Now k-ut implies (k − 1, k)-homogeneous. For let B be a k-set
and P a partition whose parts are the singletons of a (k − 1)-set
A and a single part containing all the rest; let g map A to a
transversal to P. Then g−1 maps B to a subset of A.

Now we classify (k − 1, k)-homogeneous groups; use
combinatorics (including Ramsey’s theorem) to show that such
a group is 2-homogeneous (at least for k ≥ 3) with a few known
exceptions, and then appeal to the classification of such groups.
Once they are all known, it is only necessary to check that they
all have (k − 1)-ut, and we are done.



Going down, 2

We say that a permutation group G is (l, k) homogeneous (for
l < k) if given any l-set A and k-set B, G contains an element
mapping A to a subset of B.
Now k-ut implies (k − 1, k)-homogeneous. For let B be a k-set
and P a partition whose parts are the singletons of a (k − 1)-set
A and a single part containing all the rest; let g map A to a
transversal to P. Then g−1 maps B to a subset of A.
Now we classify (k − 1, k)-homogeneous groups; use
combinatorics (including Ramsey’s theorem) to show that such
a group is 2-homogeneous (at least for k ≥ 3) with a few known
exceptions, and then appeal to the classification of such groups.
Once they are all known, it is only necessary to check that they
all have (k − 1)-ut, and we are done.



Comments

This theorem was proved by João and me and published in
2016. The proof involved an elaborate mixture of
combinatorics, group theory, and computation.

We also gave a partial classification of k-ut groups for
2 < k ≤ n/2. This was subsequently pushed a little further
with the help of Wolfram Bentz, but the job is not quite finished
yet.
However, if we regard that answer as satisfactory, we could
ask, what next? We can refine the question further by asking
about groups G for which ⟨G, t⟩ is regular for just some of the
maps of rank k. One such weakening is the k-et property, to
which I turn next.
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k-existential transversal property
A permutation group G has the k-existential transversal
property, or k-et for short, if there is a k-subset A of the domain
(called a witness) such that, for any map t with Im(t) = A, the
semigroup ⟨G, t⟩ is regular.

This is considerably weaker than k-ut, but we have a similarly
almost satisfactory result, including a nearly complete
classification for k ≥ 4.
One curious feature is that the going-down result almost holds:

Theorem
Suppose that G is a permutation group of degree n, which has the k-et
property for 2 ≤ k ≤ n/2. Then either G has the (k − 1)-et property,
or G is one of two affine groups of degree 16, with k = 6.
There are other strange beasts too: for example, the
Higman–Sims group and its automorphism group (with
n = 100) are the only groups with 4-et and n ≥ 8 which are not
2-homogeneous.
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2-et

We saw that the 2-ut property is equivalent to primitivity. So
the 2-et property is a weakening of primitivity.

Higman’s theorem says that a group is primitive if and only if
all its orbital graphs are connected. In the other direction, we
say that G is fully imprimitive if all its orbital graphs are
disconnected.

Proposition

A permutation group G has the 2-et property if and only if it is not
fully imprimitive.
In particular, a regular permutation group G (that is, acting on
itself by right multiplication) is fully imprimitive if and only if
it is not cyclic.
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Variants

I have been discussing submonoids of the full transformation
monoid Tn generated by a permutation group and one
non-permutation.

But we can play this game in other arenas. For example, the
symmetric inverse semigroup In of all partial permutations
(bijective maps between subsets of Ω). More generally, PT(n)
denotes the semigroup of partial transformations of Ω.
One could also play the game in other famous semigroups such
as the Brauer monoid and the partition monoid, or linear
versions in the general linear group and semigroup. This has
yet to be done.
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(k, l)-ut

Consider the partial transformation monoid. We want to know,
given k, l with k < l, which permutation groups G have the
property that, for any map t with domain of size l and image of
size k, the semigroup ⟨G, t⟩ is regular.

There is a combinatorial property of G, the (k, l)-ut property,
which guarantees this (if k ≤ n/2): G has the (k, l) property if,
given a k-set A, an l-set B, and a k-partition of B, there is an
element g ∈ G mapping A to a transversal for B.

Theorem
▶ (k, n)-ut is equivalent to k-ut, and (k, k)-ut to k-homogeneity.
▶ The (k, l)-ut property becomes weaker as l increases from k to n;

so, if G has k-ut, then there is a threshold t(G, k) such that G has
(k, l)-ut if and only if t(G, k) ≤ l ≤ n.

The value of T(G, k) is known for most groups G with k-ut.
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Idempotent generation

As we saw, the k-ut property guarantees that ⟨G, t⟩ contains
idempotents when rank(t) = k. Asking for it to be generated by
idempotents is a stronger condition on G which we call
k-idempotent generated (for short, k-id).

Since we have a reasonably good, if not complete, account of
k-ut groups, we should be able to read off the k-id groups, yes?
In fact the problem is that, apart from k = 2, we don’t
understand these groups. We have a condition called strong
k-ut, and k-id is sandwiched between k-ut and strong k-ut, but
we don’t have a purely combinatorial or group-theoretic
condition for k-id.
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The Road Closure Property

Let G be a transitive permutation group on Ω.

Recall: an orbital graph for G is a graph obtained by taking as
edge set an orbit of G on 2-element subsets; by Higman’s
Theorem, G is primitive if and only if every orbital graph for G
is connected.
The Road Closure Property is a strengthening of this. G has the
Road Closure Property (RCP for short) if, whenever E is an
orbit of G on 2-sets, and B a proper block of imprimitivity for
the action of G on E, the graph with edge set E \ B is connected.
In other words, if all the roads in a block are closed for
roadworks, it is still possible to get around the network.

Theorem
The permutation group G has the 2-id property if and only if it has
the Road Closure Property.
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Examples

Clearly a group with the Road Closure Property is primitive.
Moreover, it is basic. For a Hamming graph H(m, q) on Ω gives
it the structure of an m-dimensional cube (with q points on each
edge); the m directions in the cube form a system of
imprimitivity. If we delete all edges in one direction, the graph
falls apart into m layers.

Another family is exemplified by the group of collineations and
dualities of a projective plane over a finite field, acting on the
set of flags (incident point-line pairs) in the plane; edges consist
of pairs of flags sharing a point or a line. There is a natural
system of two blocks of edges; if we delete, say, all edges
consisting of pairs of flags sharing a point, then we cannot
move from flags through one point to flags through another.
Many other incidence structures provide similar examples.
There are a few other examples too: Pablo Spiga found what is
now known to be the smallest example with more than two
blocks, the group PΓU(3, 5) acting on 6000 points.
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Comments

We conjecture that the examples we have seen are typical: that
is, a basic primitive group which fails the RCP has two or three
blocks of imprimitivity on the edges of some orbital graph.
However, we are still some way from a proof.

The RCP, like synchronization, is a strengthening of primitivity.
It is tempting to think that there might be a connection between
these two properties, but none is currently known or suspected.
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