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What’s an abstract polytope?

Polytopes are beautiful geometric objects, generalising
polygons in the plane and polyhedra in 3-space. How do we
treat them abstractly?

We retain only the incidence geometry and not the metric
aspects. Thus, a polytope of rank r has objects of ranks
0, 1, 2, . . . , r− 1 with an incidence relation which partially
orders them. For convenience we also assume that there is a
bottom element of rank −1 (the empty set) and a top element of
rank r (the whole polytope).
The abstract structure of the polytope is given by the incidence
and the order. Reversing the order, retaining the incidence,
gives the dual polytope.
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Flags

A flag is a set of mutually incident objects (a chain in the poset).
We assume that any maximal flag contains one object of each
rank. Then any flag is contained in such a maximal flag, of size
r + 2.

We also assume that if objects a and b of ranks i− 1 and i + 1 are
incident, then just two objects of rank i are incident with both.
Thus for r = 3, any edge has two vertices; an incident vertex
and face are incident with two edges; and an edge is incident
with two faces.
There is also a connectedness condition, which I will not define
precisely (but we will see its effect).
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A maximal flag

The picture shows a polyhedron (a polytope of rank 3) with a
flag highlighted. Top and bottom elements of the flag are not
shown.
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A maximal flag

The picture shows a polyhedron (a polytope of rank 3) with a
flag highlighted. Top and bottom elements of the flag are not
shown.
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What’s a regular polytope?

A polytope is regular if its automorphism group acts
transitively on maximal flags.

Connectednes shows that the stabiliser of a maximal flag is the
identity; so if the action is transitive, it is regular.
Given a maximal flag F and a level i with 0 ≤ i ≤ r− 1, there is
a unique maximal flag Fi which agrees with F in all levels
except] level i.
If the polytope is regular, then there is a unique automorphism
si which maps F to Fi; ts square fixes F so is the identity. Thus,
s0, s1, . . . , sr−1 are involutions; s0 interchanges the two vertices
on the edge in F; s1 interchanges the two edges incident with
the vertex and face of F; and so on.
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Generation

It follows from the connectedness condition that the
automorphism group of the polytope is generated by the r
involutions s0, s1, . . . , sr−1. So the automorphism group of the
polytope is a group generated by r involutions, hence a
quotient of a Coxeter group.

Let us see how this works in our example.
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In the example . . .
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Here s0 should interchange v and w; s1 should interchange e and
f ; and s2 should interchange the front face with the bottom face.

In a general polytope there is no reason for such a global
symmetry to exist; but the cube is a regular polytope . . .
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The map s0 is reflection in the red mirror.
The map s1 is reflection in the green mirror.
The map s2 is reflection in the blue mirror.
These reflections satisfy the Coxeter relations for the group
C2 × S4:

〈s0, s1, s2 | s2
0 = s2

1 = s2
2 = (s0s1)

4 = (s0s2)
2 = (s1s2)

3 = 1〉.
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String C-groups

The automorphisms have two further properties:

I the string property: if i, j ∈ {0, 1, . . . , r− 1} and |i− j| ≥ 2,
then si and sj commute;

I the intersection property; if I and J are subsets of
{0, 1, . . . , r− 1} and GI denotes the group generated by
{si : i ∈ I}, then for any two sets I and J of indices,

GI ∩GJ = GI∩J.

A group G generated by involutions s0, . . . , sr−1 satisfying these
properties is called a string C-group. Thus the automorphism
group of a regular polytope is a string C-group; and conversely,
from a string C-group a construction of Jacques Tits produces a
regular polytope, unique up to isomorphism and duality
(reversing the partial order, or reversing the order of the
generating involutions).
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String C-groups for Sn

I will be talking about polytopes whose automorphism group
is the symmetric group Sn, in other words, generating sets for
this group which satisfy the conditions for a string C-group.

It is easy to see that the elements s0, s1, . . . , sr−1 are
independent, in the sense that none of them is in the group
generated by the others.
A theorem of Julius Whiston asserts that an independent set in
Sn has cardinality at most n− 1, with equality only if it
generates the group. Philippe Cara and I found all the
independent generating sets of size n− 1 for Sn.
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Rank n− 1

So a string C-group for Sn has rank at most n− 1.

This is attained by the Coxeter generators for Sn:

s0 = (1, 2), s1 = (2, 3), . . . , sn−2 = (n− 1, n).

(These were actually found by E. H. Moore, my mathematical
great-great-great-grandfather, in 1896.)
The corresponding polytope is the regular simplex.
Moreover, this is the unique polytope of rank n− 1 with group
Sn, up to isomorphism, for n ≥ 5; this is easily read off from my
results with Cara, since the only case with n ≥ 5 in which the
generators are all involutions is when they are the edges of a
tree, and the string condition forces this tree to be a path.
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Ranks n− 2, n− 3, n− 4

Building on this, Fernandes and Leemans showed that there is
a unique string C-group for Sn of rank n− 2 for n ≥ 7 (up to
isomorphism and duality). The corresponding polytope is a
generalized petrial of the hypercube (a skew polytope built
from the petrie polytope of the cube’s vertex figure).

They also showed that every rank from 3 to n− 1 is realised by
some string C-group for Sn.
Then these two with Mark Mixer showed that (up to
isomorphism and duality) there are exactly seven string
C-groups of rank n− 3 for Sn if n ≥ 9, and exactly nine of rank
n− 4 if n ≥ 11.
The obvious conjecture is what we have just proved.
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Our theorem

Fernandes, Leemans and I have just proved the following
theorem:

Theorem
For any positive integer k, the number of string C-groups of rank
n− k for Sn (up to isomorphism and duality) depends only on k and
not on n if n ≥ 2k + 3.
If ck denotes this number, then the first six values of ck are

1, 1, 7, 9, 35, 48, 135.

This is sequence A359367 in the On-line Encyclopedia of
Integer Sequences. The last value was a big computation which
only completed on 19 January.
We do not know the next term. It would suffice to count the
string C-groups of rank 11 for S19, but S19 is quite a big group!
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Some words about the proof

In previous work, we had proved bounds of about n/2 for the
rank of a transitive proper subgroup of Sn:

I if G is imprimitive, then the rank is at most b(n + 2)/2c;
I if G is primitive but not Sn or An, then the rank is at most

n/2;
I if G is the alternating group An with n ≥ 12, then the rank

is at most b(n− 1)/2c.
Note that these results use the Classification of Finite Simple
Groups.
The last of the three results given was proved in Aveiro, where
the photo I showed earlier was taken.
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Fracture graphs

Thus we may assume that, if we have a large rank (greater than
n/2 + c) string C-group representation for Sn, with generators
s0, . . . , sr−1, then the maximal parabolic subgroups

Gi = 〈sj : j ∈ {0, . . . , r− 1} \ {i}〉

are intransitive.

In this situation, the representation gives rise to a fracture
graph, as follows: there must be at least one pair of points in
different Gi-orbits which are interchanged by si; choose any one
such pair and take it as an edge labelled i in the fracture graph.
The fracture graph for the tetrahedron is simply the path on n
vertices.
Use of this graph, which was pioneered in some of the earlier
work, is a crucial tool in the argument.
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2-fracture graphs

Sometimes it occurs that, for all i, there are at least two cycles of
si joining points in different Gi-orbits. Then we choose two of
them and label them i to get a 2-fracture graph.

Fracture and 2-fracture graphs are not unique; but this gives
the freedom to modify such a graph into one more suitable for
our purpose.
In the regime where we are most interested, the rank is about
n/2, and the number of edges in a 2-fracture graph is twice the
rank, so these graphs are close to trees (often all components
are either trees or unicyclic). If there are cycles, we can move
them around by replacing one edge with another.



2-fracture graphs

Sometimes it occurs that, for all i, there are at least two cycles of
si joining points in different Gi-orbits. Then we choose two of
them and label them i to get a 2-fracture graph.
Fracture and 2-fracture graphs are not unique; but this gives
the freedom to modify such a graph into one more suitable for
our purpose.

In the regime where we are most interested, the rank is about
n/2, and the number of edges in a 2-fracture graph is twice the
rank, so these graphs are close to trees (often all components
are either trees or unicyclic). If there are cycles, we can move
them around by replacing one edge with another.



2-fracture graphs

Sometimes it occurs that, for all i, there are at least two cycles of
si joining points in different Gi-orbits. Then we choose two of
them and label them i to get a 2-fracture graph.
Fracture and 2-fracture graphs are not unique; but this gives
the freedom to modify such a graph into one more suitable for
our purpose.
In the regime where we are most interested, the rank is about
n/2, and the number of edges in a 2-fracture graph is twice the
rank, so these graphs are close to trees (often all components
are either trees or unicyclic). If there are cycles, we can move
them around by replacing one edge with another.



Splits and perfect splits

For the next part it might help you to think about the Moore
generators of Sn:

(1, 2), (2, 3), . . . , (n− 2, n− 1), (n− 1, n).

We say that index i is a split for a string C-group C ≤ Sn if the
domain {1, . . . , n} can be partitioned into two parts O1 and O2
such that si is the unique involution interchanging points in
different parts, and there is at most one such pair of points
interchanged.
If i is a split, then we can write sj = tjuj for j 6= i, where tj acts
on O1 and uj on O2; and si = ti(α, β)ui, where α ∈ O1 and
β ∈ O2. If tj = 1 for j > i and uj = 1 for j < i (in other words, if
s0, . . . , si−1 act only on O1 and sj+1, . . . , sr−1 only on O2), we call
the split perfect.
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Rank and degree extensions

Now suppose that i is a perfect split for a string C-group on Sn.
We construct a string C-group on Sn+1 as follows. Take a new
element γ in the domain. Now replace the generator
si = ti(α, β)ui by two generators

s′i = ti(α, γ), s′′i = (γ, β)ui.

We have increased both the degree and the rank by 1, so that
the difference remains the same.



Proof of the theorem

Now it can be shown that this extension gives a bijection from
string C-groups of rank n− k with group Sn and a perfect split
to string C-groups of rank n− k + 1 with group Sn+1 with a
perfect split.

The difficult part of the proof involves showing that, if
n ≥ 2k + 3, then a string C-group of rank n− k with group Sn
has a perfect split. This requires many pages of detailed
argument with fracture and 2-fracture graphs.
This proves the theorem, and shows that indeed to compute the
kth term in the sequence we only have to classify the string
C-groups for S2k+3 of rank n− k = k + 3.



Proof of the theorem

Now it can be shown that this extension gives a bijection from
string C-groups of rank n− k with group Sn and a perfect split
to string C-groups of rank n− k + 1 with group Sn+1 with a
perfect split.
The difficult part of the proof involves showing that, if
n ≥ 2k + 3, then a string C-group of rank n− k with group Sn
has a perfect split. This requires many pages of detailed
argument with fracture and 2-fracture graphs.

This proves the theorem, and shows that indeed to compute the
kth term in the sequence we only have to classify the string
C-groups for S2k+3 of rank n− k = k + 3.



Proof of the theorem

Now it can be shown that this extension gives a bijection from
string C-groups of rank n− k with group Sn and a perfect split
to string C-groups of rank n− k + 1 with group Sn+1 with a
perfect split.
The difficult part of the proof involves showing that, if
n ≥ 2k + 3, then a string C-group of rank n− k with group Sn
has a perfect split. This requires many pages of detailed
argument with fracture and 2-fracture graphs.
This proves the theorem, and shows that indeed to compute the
kth term in the sequence we only have to classify the string
C-groups for S2k+3 of rank n− k = k + 3.



What next?
Various questions are raised by this result. Here is a sample.

Question
Can we extend the classification to lower ranks? The table gives some
numbers.

Sn Rk n− 1 Rk n− 2 Rk n− 3 Rk n− 4 Rk n− 5 Rk n− 6
S5 1 4
S6 1 4 2
S7 1 1 7 35
S8 1 1 11 36 68
S9 1 1 7 7 37 129
S10 1 1 7 13 52 203
S11 1 1 7 9 25 43
S12 1 1 7 9 40 75
S13 1 1 7 9 35 41
S14 1 1 7 9 35 54
S15 1 1 7 9 35 48
S16 1 1 7 9 35 48
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Question
What about alternating groups? The maximum rank of a polytope for
An is known to be b(n− 1)/2c for n ≥ 12, but we have no
characterisation of string C-groups achieving or close to this bound.
Our construction increasing both rank and degree by 1 will be
of no use; we need to increase degree by 2 and rank by 1.

Question
What about other groups?
The maximal size of a minimal generating set (the analogue of
Whiston’s result) gives an upper bound, but things are much
more difficult in general. I have a related conjecture whose
proof depends on a question about subgroup lattices:

Question
Is it true that the maximum size of an independent set in G is equal to
the maximum, over all permutation representations, of the maximum
size of a minimal (under inclusion) base for G?
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Question
We may loosen the geometric or combinatorial hypotheses in various
ways, for example,

I we can drop the “string” condition;
I we can drop the condition that generators are involutions;
I we can drop the C-group condition;
I we can consider more general structures such as maps or

hypermaps.

Question
Do the polytopes have nice geometric realisations?
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If you are interested, our paper is on the arXiv, 2212.12723.

. . . for your attention.
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