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I know something about groups, and a bit about rings, but very
little about the Yang–Baxter equation. That would be “nothing”
but for Tatiana Gateva-Ivanova, who got me interested in it
during a programme on Combinatorics and Statistical
Mechanics, at the Isaac Newton Institute in Cambridge fifteen
years ago.

But two years ago I was involved in an exciting adventure
concerning graphs on groups, rings, and other algebraic
structures, leading a research discussion in India (remotely –
this was at the start of the pandemic) which has led to a lot of
subsequent work.
So when I was invited to speak here, I hoped to apply some of
those ideas to a different kind of algebraic set-up, set-theoretic
solutions to the YBE.
I haven’t got much to say on this yet but I hope that something
interesting may develop.
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Introduction

The connection between graphs and algebraic structures goes
back to Cayley in the 19th century.

I will not be talking about Cayley graphs. My topic is graphs
which more directly reflect the algebraic structure in question.
The prototype is the commuting graph of a finite group G,
where the vertex set is G (or possibly some subset), and g and h
are joined by an edge if they commute.
This was used by Brauer and Fowler in 1955 to show that there
are only finitely many finite simple groups with a given
involution centraliser, one of the basic results in the
Classification of Finite Simple Groups, leading to a large
amount of work characterising particular simple groups by
their involution centralisers, and yielding several new sporadic
simple groups along the way.
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Remarks

Brauer and Fowler had to assume that their simple group had
even order, since Burnside’s conjecture had not yet been proved
at this point.

In the commuting graph, the closed neighbourhood of a vertex
g is the centraliser of g. Graph theory tells us that we can bound
the number of vertices by bounding the diameter and valency.
(The diameter is bounded after removing the identity, since it is
joined to all other vertices.)
In fact, the word “graph” does not occur in the paper; but
Brauer and Fowler carefully define the graph metric and use
this instead.
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Graphs on groups and rings

Since then, many different graphs on groups have been
defined, including the generating graph (two vertices joined if
they generate the group), the power graph (two vertices joined
if one is a power of the other), and numerous variants.

There are also graphs defined on rings, notably the zero-divisor
graph, in which two non-zero elements are joined if their
product is zero.
Much of the literature on these graphs consists of calculating
various graph-theoretic parameters of these graphs. I will not
cover most of this.



Graphs on groups and rings

Since then, many different graphs on groups have been
defined, including the generating graph (two vertices joined if
they generate the group), the power graph (two vertices joined
if one is a power of the other), and numerous variants.
There are also graphs defined on rings, notably the zero-divisor
graph, in which two non-zero elements are joined if their
product is zero.

Much of the literature on these graphs consists of calculating
various graph-theoretic parameters of these graphs. I will not
cover most of this.



Graphs on groups and rings

Since then, many different graphs on groups have been
defined, including the generating graph (two vertices joined if
they generate the group), the power graph (two vertices joined
if one is a power of the other), and numerous variants.
There are also graphs defined on rings, notably the zero-divisor
graph, in which two non-zero elements are joined if their
product is zero.
Much of the literature on these graphs consists of calculating
various graph-theoretic parameters of these graphs. I will not
cover most of this.



Three general questions

I will talk just about groups, but similar questions can be asked
for other structures.

1. Can we obtain new results about groups by considering
these graphs?

2. Can we recognise old and new classes of groups by means
of graphs?

3. Can we construct beautiful graphs in this way (possibly
after some post-processing)?

I will give examples of all three.
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1. A new result about groups

In 1904, Landau proved that there is a function F such that a
finite group with k conjugacy classes has order at most F(k). In
other words, there are only finitely many finite groups with a
given number of conjugacy classes.

Many authors have worked on the problem of finding good
bounds for F(k).
The solvable conjugacy class graph (for short, scc-graph) of a
group has the conjugacy classes as vertices, with C and D
adjacent if there exist c ∈ C and d ∈ D such that ⟨c, d⟩ is
solvable.
Recently, Parthajit Bhowal, Rajat Kanti Nath, Benjamin Sambale
and I showed:

Theorem
There is a function f such that a finite group whose scc-graph has
clique number k has order at most f (k).
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Comments

The clique number of a graph is the size of the largest complete
subgraph.

We used the Classification of Finite Simple Groups (CFSG) (a
tool not available to Landau!) but only in a rather low-key way.

Problem
Can the theorem be proved without CFSG?
Also in contrast to Landau’s case, no explicit bounds are
known for f (k).

Problem
Find such bounds!
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2. Defining group classes

There are two natural ways to define classes of groups from
graphs:

1. Choose a class of graphs (such as perfect graphs, cographs,
chordal graphs, threshold graphs, split graphs, . . . ), and a
type t of graph on groups, and ask: For which groups G does
t(G) belong to the chosen graph class?

2. Choose two types of graph on groups, say t1 and t2, so that
t1(G) is an induced subgraph of t2(G), and ask: For which
groups G is t1(G) = t2(G)?

There are several examples of each in the literature. I will
concentrate on the second.
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Two examples

We have seen the commuting graph (g ∼ h if gh = hg) and the
power graph (g ∼ h if one of g and h is a power of the other).
Between them is the enhanced power graph, with g ∼ h if there
exists k such that g and h are powers of k.

Proposition

Let G be a finite group.
1. The power graph of G is equal to the enhanced power graph if

and only if G contains no two commuting subgroups of distinct
prime orders.

2. The enhanced power graph of G is equal to the commuting graph
if and only if G contains no two commuting subgroups of the
same prime order.

I will briefly discuss the two classes.
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Two classes of groups

The first class consists of EPPO groups, those in which every
element has prime power order. (In other terminology these are
groups whose Gruenberg–Kegel graph is null.) After
pioneering work by Higman on solvable groups in the 1950s
and Suzuki on simple groups in the 1960s, they were all
determined by Brandl in a somewhat obscure paper in 1981.

The second class consists of groups containing no subgroup
Cp × Cp for p prime; in other words, all Sylow subgroups are
cyclic or (if p = 2) generalized quaternon. Those with all Sylow
subgroups cyclic are metacyclic of known structure; the others
are determined by theorems of Glauberman and
Gorenstein–Walter.
All these results are without using CFSG.
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The deep commuting graph

We heard about the Bogomolov multiplier from Geoffrey
Janssens yesterday; it has a role here too.

The deep commuting graph of G is the graph with vertex set G
in which x and y are joined if and only if their preimages in
every central extension of G commute.
The deep commuting graph is contained in the commuting
graph (in the sense of spanning subgraph, that is, its edge set is
a subset of that of the commuting graph), and contains the
enhanced power graph (since a central extension of a cyclic
group is abelian).
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Bojan Kuzma and I investigated this graph, and proved
(among other things)

Theorem
Let G be a finite group. Then the deep commuting graph is equal to
the commuting graph if and only if the Bogomolov and Schur
multipliers of G coincide.

Hence if G is simple then its commuting and deep commuting
graphs are equal if and only if its Schur multiplier is trivial.
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Other classes

Other classes definable from graphs in similar ways include
▶ mimimal non-abelian, non-nilpotent, or non-solvable

groups;

▶ Dedekind groups (those with all subgroups normal);
▶ 2-Engel groups (those satsfying the commutator identity

[g, h, h] = 1).
In many other cases, work is in progress. For example, the
power graph of any finite group is perfect (that is, every
induced subgraph has clique number equal to chromatic
number): this condition is equivalent to forbidding odd cycles
(of length greater than 3) and their complements as induced
subgraphs, according to the Strong Perfect Graph Theorem.
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More on perfect graphs

There is no analogue for the enhanced power graph or
commuting graph: these are universal (every finite graph
occurs as an induced subgraph). We do not know which
groups have one or other of these graphs perfect (this has been
studied for the commuting graph by Britnell and Gill, who
found all perfect groups for which this graph is perfect).

Veronica Phan and I proved that the enhanced power graph of
any finite group is weakly perfect – this means that the graph
itself has clique number equal to chromatic number, though
this may fail for induced subgraphs.
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3. Finding beautiful graphs

If you choose your favourite group and ask the computer to
construct one of these graphs and tell you how many
automorphisms it has, you are in for a shock. For example, the
commuting group of the alternating group A5 (a group of order
60) has 477090132393463570759680000 automorphisms. In fact,
most of this is rubbish; in the case of A5 it is all rubbish. But
sometimes there is a jewel buried in the heart of the lotus
flower.

Two vertices x, y of a graph are called twins if they have the
same neighbours, except possibly one another. If two vertices
are twins, then the map interchanging them and fixing
everything else is a graph automorphism.
Our graphs on groups tend to have many pairs of twins. If x
and y generate the same cyclic subgroup of G, then they are
twins in all the graphs mentioned so far, and essentially all
others as well.
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Twin reduction

Twin reduction is the process of choosing a pair of twins and
identifying them, repeating the process until no twins remain.
The resulting graph is (up to isomorphism) independent of the
way the reduction is carried out. I will call it the cokernel of the
original graph (no connection with homological algebra
implied).

A graph is called a cograph if it has no induced subgraph
isomorphic to the 4-vertex path. Cographs form the smallest
class of graphs which can be built from 1-vertex graphs by the
operations of disjoint union and complementation.

Proposition

A graph is a cograph if and only if its cokernel is the 1-vertex graph.
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operations of disjoint union and complementation.

Proposition

A graph is a cograph if and only if its cokernel is the 1-vertex graph.
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The search

The above result gives added significance to the question:

Problem
Given a type t of graph defined on groups, for which groups G is t(G)
a cograph?

Partial answers are known in some cases. In particular, Pallabi
Manna, Ranjit Mehatari and I have determined the finite simple
groups whose power graph is a cograph; Xuanlong Ma, Natalia
Maslova and I have done the same for the commuting graph.
The simplest results are for what I will call the difference graph,
whose edges are those in the enhanced power graph but not in
the power graph.
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Some results

Empirically we find four cases for the difference graph of a
simple group:

▶ the difference graph has no edges (these are the EPPO
groups defined earlier);

▶ the difference graph is a cograph, so its cokernel has a
single vertex;

▶ the cokernel of the difference graph has many very small
connected components, all isomorphic;

▶ the cokernel is connected; its full automorphism group is
the same as the automorphism group of the simple group
with which we began; and the graph has nice properties
(for example, large girth).
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The jewel in the lotus

In the first three cases, the wind blows away all the lotus petals
and nothing remains. But in the fourth case, we have
discovered a jewel.
For example, if G is the Matheu group M11, then the cokernel of
the difference graph is bipartite, with blocks of size 165 and
220; the valencies of vertices in the two blocks are 4 and 3
respectively; the graph is connected, with diameter and
girth 10; and its automorphism group is M11.
More exploration remains to be done . . .
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What about Yang–Baxter?

To someone with a hammer, everything is a nail.

Can any of these graph-theoretic approaches tell us anything
about set-theoretic solutions of the YBE? I have only very
recently begun to think about this, so I haven’t got very far; I
would appreciate suggestions!
To begin at the beginning: the set-theoretic Yang–Baxter
equation is an equation for a function r : X × X → X × X
satisfying

r12r23r12 = r23r12r23,

where this equation refers to maps on X × X × X, and rij
replaces the pair (xi, xj) by the pair of coordinates of r(xi, xj).
There are three additional conditions which are sometimes
imposed:
▶ r(x, x) = (x, x) for all x ∈ X;
▶ r is an involution (this implies that it is a bijection);
▶ r is non-degenerate (see next slide).
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Monoids and groups

As usual, an endomorphism of (X, r) is a self-map of X whose
induced action on X2 commutes with r. An invertible
endomorphism whose inverse is also an endomorphism is an
automorphism. So we have an endomorphism monoid and an
automorphism group.

Said otherwise, automorphisms preserve the orbits of r (in the
sense of dynamics), the result of iterating r on a starting pair. If
r is bijective, these are the automorphisms of the group it
generates (since X is finite).
The Yang–Baxter monoid and group have completely different
definitions; how are they related?
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Yang–Baxter monoid and group

We can write r(x, y) as (λx(y), ρy(x)), where, for any x, y ∈ X,
the functions λx and ρy map X to X. We say that our solution is
non-degenerate if these functions are bijections for all choices
of x and y.

Now we regard the permutations λx and ρy as generators of a
group G(r) acting on X. Warning: It is customary to regard the
λx as acting on the left and the ρy on the right: as a mnemonic,
r(x, y) is often written as (xy, xy).
The YBE and the extra conditions imply that the ρs can be
written in terms of the λs, and vice versa; so the groups
generated by the λs and by the ρs are equal. This is the
Yang–Baxter permutation group associated with the solution.
Note: we should certainly be open to relaxing the
non-degeneracy condition and working with monoids rather
than groups; but their theory is less developed.
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Connections

The representation theory of permutation groups is based on
the relation between the permutation group and its centralizer
algebra, using the double centralizer theory. Can something
similar be done here? We have three objects in play, the monoid
(or group) generated by r; the endomorphism monoid or
automorphism group of (X, r); and the Yang–Baxter
transformation monoid or permutation group.

Problem
What are the relations among these?
In the case of the trivial solution r(x, y) = (y, x), the YB group is
trivial and the automorphism group is the symmetric group.
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Cayley graph

With the assumptions earlier, the YB permutation group is
generated by the maps λx; in other words, there is a map from
X into Sym(X) whose image generates the YB permutation
group.

So we can construct the Cayley graph Cay(G, {λ : x : x ∈ X}),
so the set X is both the domain of the permutation group and
an index set for the edges through the identity in the Cayley
graph.
What can we do with this set-up?



Cayley graph

With the assumptions earlier, the YB permutation group is
generated by the maps λx; in other words, there is a map from
X into Sym(X) whose image generates the YB permutation
group.
So we can construct the Cayley graph Cay(G, {λ : x : x ∈ X}),
so the set X is both the domain of the permutation group and
an index set for the edges through the identity in the Cayley
graph.

What can we do with this set-up?



Cayley graph

With the assumptions earlier, the YB permutation group is
generated by the maps λx; in other words, there is a map from
X into Sym(X) whose image generates the YB permutation
group.
So we can construct the Cayley graph Cay(G, {λ : x : x ∈ X}),
so the set X is both the domain of the permutation group and
an index set for the edges through the identity in the Cayley
graph.
What can we do with this set-up?



What to do?

More questions:
▶ Silvia Properzi yesterday defined a graph from a skew

brace. I think that several further analogues of graphs on
groups can be defined by similar methods.

▶ Is it possible to use beautiful combinatorial objects
(perhaps graphs on groups) to define interesting solutions
of the YBE, or vice versa?

Suggestions welcome!

. . . for your attention.
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