
Sylvester designs

Peter J. Cameron, University of St Andrews

Midsummer Combinatorics Workshop 2023



George F. Simmons (1925–2019)

George F. Simmons wrote a textbook Introduction to Topology
and Modern Analysis in 1963. I used to own a copy, and I
consider it perhaps the best textbook I know.

It had three roughly equal parts:
▶ Topology (a first course, including compactness,

separation axioms, etc.);
▶ Linear algebra (a first course, up to the Spectral Theorem);
▶ Functional analysis = topology + linear algebra (up to the

Gelfand–Naimark theorem).
I liked it so much that it is a bit surprising that I went on to
group theory and combinatorics rather than topology and
analysis.
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Two kinds of mathematics

In the preface, he says,
It seems to me that a worthwhile distinction can be drawn
between two types of pure mathematics. The first—which
unfortunately is somewhat out of style at present—centers
attention on particular functions and theorems which are
rich in meaning and history, like the gamma function, or
on juicy individual facts, like Euler’s wonderful formula

1 + 1/4 + 1/9 + · · · = π2/6.

The second is concerned primarily with form and structure.

Most of us here, I think, are more comfortable with the second
kind of mathematics. But today I will give you an example of
the first.
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My topic

The topic is taken from the paper
▶ R. A. Bailey, P. J. Cameron, L. H. Soicher and E. R.

Williams, Substitutes for the non-existent square lattice
designs for 36 varieties, J. Agricultural, Biological and
Environmental Statistics 25 (2020), 487–499.

This paper may be the only appearance ever of the outer
automorphism of the symmetric group S6 (my fact “rich in
meaning and history”) in a journal of agricultural statistics.
I will start with a little of the background.



My topic

The topic is taken from the paper
▶ R. A. Bailey, P. J. Cameron, L. H. Soicher and E. R.

Williams, Substitutes for the non-existent square lattice
designs for 36 varieties, J. Agricultural, Biological and
Environmental Statistics 25 (2020), 487–499.

This paper may be the only appearance ever of the outer
automorphism of the symmetric group S6 (my fact “rich in
meaning and history”) in a journal of agricultural statistics.

I will start with a little of the background.



My topic

The topic is taken from the paper
▶ R. A. Bailey, P. J. Cameron, L. H. Soicher and E. R.

Williams, Substitutes for the non-existent square lattice
designs for 36 varieties, J. Agricultural, Biological and
Environmental Statistics 25 (2020), 487–499.

This paper may be the only appearance ever of the outer
automorphism of the symmetric group S6 (my fact “rich in
meaning and history”) in a journal of agricultural statistics.
I will start with a little of the background.



Block designs

Mathematicians and statisticians understand the term “block
design” in different ways. I take the statisticians’ view here.

The context is comparative experiments where, for example, a
number of newly-bred crop varieties have to be field-tested
against one another and existing varieties. Suppose that v
varieties are to be tested. If N plots are available, and they are
all alike, the best design (one which gives the most
information) is to plant each variety on ⌊N/v⌋ or ⌈N/v⌉ plots.
But often there are systematic differences between plots. In the
commonest case, they can be divided into b blocks, each
containing k plots, where N = bk. For example there might be k
plots available on each of b farms in different parts of the
country.
In this case, the way we allocate varieties to plots has an effect
on the amount of information we can extract.
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Minimising variance

Because of random “errors”, the estimates of treatment
differences are random variables, and we want to mimimise
their variances.

Because this is a multidimensional problem, there is no simple
answer. Several methods are used:
▶ we could minimise the average variance;
▶ we could minimise the volume of a confidence ellipsoid;
▶ we could minimize the largest variance.

The designs which achieve this are called A-, D-, E-optimal
respectively.



Minimising variance

Because of random “errors”, the estimates of treatment
differences are random variables, and we want to mimimise
their variances.
Because this is a multidimensional problem, there is no simple
answer. Several methods are used:

▶ we could minimise the average variance;
▶ we could minimise the volume of a confidence ellipsoid;
▶ we could minimize the largest variance.

The designs which achieve this are called A-, D-, E-optimal
respectively.



Minimising variance

Because of random “errors”, the estimates of treatment
differences are random variables, and we want to mimimise
their variances.
Because this is a multidimensional problem, there is no simple
answer. Several methods are used:
▶ we could minimise the average variance;

▶ we could minimise the volume of a confidence ellipsoid;
▶ we could minimize the largest variance.

The designs which achieve this are called A-, D-, E-optimal
respectively.



Minimising variance

Because of random “errors”, the estimates of treatment
differences are random variables, and we want to mimimise
their variances.
Because this is a multidimensional problem, there is no simple
answer. Several methods are used:
▶ we could minimise the average variance;
▶ we could minimise the volume of a confidence ellipsoid;

▶ we could minimize the largest variance.
The designs which achieve this are called A-, D-, E-optimal
respectively.



Minimising variance

Because of random “errors”, the estimates of treatment
differences are random variables, and we want to mimimise
their variances.
Because this is a multidimensional problem, there is no simple
answer. Several methods are used:
▶ we could minimise the average variance;
▶ we could minimise the volume of a confidence ellipsoid;
▶ we could minimize the largest variance.

The designs which achieve this are called A-, D-, E-optimal
respectively.



Minimising variance

Because of random “errors”, the estimates of treatment
differences are random variables, and we want to mimimise
their variances.
Because this is a multidimensional problem, there is no simple
answer. Several methods are used:
▶ we could minimise the average variance;
▶ we could minimise the volume of a confidence ellipsoid;
▶ we could minimize the largest variance.

The designs which achieve this are called A-, D-, E-optimal
respectively.



The concurrence graph

The associated parameters are determined by the Laplacian
spectrum of a certain multigraph called the concurrence graph.
The vertices of the graph are the varieties or treatments being
tested; the number of edges between vertices vi and vj is the
number of occurrences of vi and vj in the same block. (For
example, a block containing three occurrences of vi and two of
vj contributes 6 to this number.)

The Laplacian matrix has (i, j) entry the negative of the number
of edges from vi to vj if i ̸= j, and the valency of vi if i = j. It is
positive semidefinite; the multiplicity of 0 is the number of
connected components.
I make one further assumption: the design should be
equireplicate, that is, each treatment should be used the same
number (say r) of times.
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Detecting optimality

We assume the concurrence graph is connected (else not all
pairs of treatments can be compared). Then 0 is a simple
eigenvalue with all-1 eigenvector (the trivial eigenvalue).

Replace each edge in the concurrence graph with a 1-ohm
resistor. Then the A-optimal design minimises the average
pairwise resistance between all pairs of terminals, and hence
maximises the harmonic mean of the nontrivial Laplacian
eigenvalues.
The D-optimal design maximizes the number of spanning
trees, and hence the geometric mean of the nontrivial Laplacian
eigenvalues.
The E-optimal design maximizes the smallest non-trivial
eigenvalue. This important parameter is connected with
isoperimetric number and rate of convergence of a random
walk.
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Square lattice designs

We consider the case where v = k2.

If r = 2, we can make a design by identifying the treatments
with the points of a square array, and using rows and columns
as blocks.
For larger r, suppose that there exist r − 2 mutually orthogonal
Latin squares of order k. For each square, we take a new block
for each entry in the square, consisting of the positions where
that entry occurs.
All these designs are optimal on all criteria, and are widely
used in practice. They also have the good feature that, if one
replicate is lost for some reason, the remaining r − 1 replicates
still carry an (optimal) square lattice design (provided that
r > 2).
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The number 6

All numbers k up to 9 except 6 are prime powers, so there exist
k − 1 mutually orthogonal Latin squares, the maximum
possible.

However, for k = 6, as Euler conjectured, there do not exist
even a pair of orthogonal Latin squares of order k, so we cannot
do better than r = 3. And 6 is the only number for which this
happens, as the “Euler spoilers” Bose, Shrikhande and Parker
showed.
But what God takes away with one hand He gives with the
other. For 6 is the only number k, finite or infinite, for which the
symmetric group Sk of degree k has an outer automorphism.
This can be used to construct good substitutes for the missing
designs.
I will briefly describe this “juicy individual fact”, using
Sylvester’s quaint terminology.
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The outer automorphism of S6

Let A be a set of size 6.

▶ a duad is a 2-element subset of A (an edge of the complete
graph).

▶ a syntheme is a 2 + 2 + 2 partition of A (a 1-factor of the
complete graph).

▶ a (synthematic) total is a partition of the set of duads into
five synthemes (a 1-factorisation of the complete graph).

Counting arguments show that the number of duads,
synthemes and totals is 15, 15 and 6 respectively. Let X be the
set of synthematic totals.
The symmetric group acts differently on A and X, giving rise to
an outer automorphism.
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In category theory land

In the language of category theory, the category of 6-element
sets and bijections has a non-trivial functor Φ (mapping a set to
the set of its totals).

Moreover, there are bijections
▶ between synthemes and “duads of totals” (any two totals

share a unique syntheme);
▶ between duads and “synthemes of totals”; and
▶ between points of A and “totals of totals”.

So there is a natural transformation from Φ2 to the identity.
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Applications

In Chapter 6 of my book with Jack van Lint, it is shown how to
use the outer automorphism of S6 to construct
▶ the projective plane of order 4;

▶ the generalized quadrangle of order 2;
▶ the Steiner system S(5, 6, 12);
▶ the Moore graph of valency 7 on 50 vertices.

Related to the last is the construction of a graph which Norman
Biggs called the Sylvester graph. Let X be the set of totals on A.
The vertex set of the graph is A × X; there is an edge from (a, x)
to (b, y) if and only if the duad {a, b} belongs to the syntheme
x ∩ y.
This is a distance-transitive graph of valency 5 on 36 vertices;
its automorphism group is equal to the automorphism group of
S6, with order 1440. Its diameter is 3, and two vertices are at
distance 3 if and only if they agree in one coordinate (same
point of A or same total).
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distance 3 if and only if they agree in one coordinate (same
point of A or same total).



Applications

In Chapter 6 of my book with Jack van Lint, it is shown how to
use the outer automorphism of S6 to construct
▶ the projective plane of order 4;
▶ the generalized quadrangle of order 2;
▶ the Steiner system S(5, 6, 12);
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Starfish

The Sylvester graph is drawn on a 6 × 6 grid A × X. A starfish
is a closed vertex neighbourhood.
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A galaxy of starfish consists of all the starfish whose “heads” lie
in a particular column. Our comment about distance 3 shows
that the starfish in a galaxy are pairwise disjoint and so
partition the set of vertices.
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The first Sylvester design

Now we can construct a block design by taking as blocks the
rows and columns of the square grid together with the 36
starfish. It has 48 blocks of size 6, each point in 8 of them.

The design is resolvable: the resolution classes are the rows, the
columns, and the 6 galaxies. By removing some galaxies, we
obtain designs with smaller replication number.
Two points on an edge of the graph are contained in two
blocks, any other pair of points is in just one block. So the
concurrence matrix is the sum of the adjacency matrix of the
Sylvester graph and the all-1 matrix (with a multiple of I
subtracted), and its eigenvalues are easily calculated.
All these designs do very well on the optimality criteria
(especially A, the most commonly used in this context).
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Two more

Emlyn Williams maintains a program CycDesign, which uses
methods including random search to find good block designs.
After we announced the Sylvester design, he used his software
to find another design with the same value on the A-criterion to
four places of decimals. It turns out that it has exactly the same
concurrence matrix, and so agrees on all criteria; but it is not
the same design, since its automorphism group is trivial.

Then Leonard Soicher found another, again with the same
concurrence matrix, by looking at structures called semi-Latin
squares. It is different again, since it has 144 automorphisms.
So we define a Sylvester design to be an equireplicate block
design with 36 points and 48 blocks of size 6, whose
concurrence matrix is the sum of the adjacency matrix of the
Sylvester graph and the all-1 matrix, minus a multiple of I.
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Two problems

Problem
Are Sylvester designs optimal (on the A, D and E criteria) among all
designs with v = 36, b = 48, k = 6 and r = 8?

Problem
Classify the Sylvester designs up to isomorphism.
The second problem may be difficult. We do not know whether
the three examples we know are the only ones, or whether
there are billions of designs, or anywhere in between.
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