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Graphs and algebraic structures

In the last couple of decades, there has been a huge surge of
activity in this area. Keith Dennis informed me yesterday that
my paper on the power graph of a group is the most cited
paper of all time in the Journal of Group Theory, some evidence
of the amount of work being done.

Much of this concerns groups and rings, but there are also
connections with semigroups, vector spaces, etc. Just on
groups, the graphs that have been studied include power
graph, commuting graph, generating graph and several
variants; also “super” and “contracted” versions of these. For
rings we have the zero-divisor graph, unit graph, and others.
In addition, there are intersection graphs of subalgebras,
perhaps of a particular kind (e.g. cyclic subgroups).
Can we extract any general principles?
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General principles

A couple of general principles have emerged. But these by no
means cover all of this vast territory.

Vinayak Joshi has proposed the zero-divisor graph of a
partially ordered set, which links enhanced power graphs of
groups, zero-divisor graphs of rings, component graphs of
vector spaces, and others.
I proposed a notion of duality: two graphs are dual in this
sense if they are the two components of the distance-2 graph of
a bipartite graph. For example, the subgroup intersection graph
of a group (whose vertices are the subgroups, joined if their
intersection is non-trivial) is dual to the non-generating graph.
There is a link between these two principles, which we hope to
explore further in the near future.
In what follows, I will talk mostly about groups.
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What kind of graphs?

Groups measure symmetry; they are highly structured, elegant
objects. But graphs are “wild”: we can put in edges however
we please. Some graphs are beautiful, but most are scruffy.
Nevertheless, they have a lot to say to one another.

We would expect to find that graphs associated with algebraic
structures are less scruffy than general graphs. Later I will
show you some examples of beautiful graphs from groups.
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An example

Here is a brief example, which I will not pursue. The
generating graph of a group has vertex set the non-identity
group elements, two elements x and y joined if ⟨x, y⟩ = G. Now
not every group can be generated by two elements; but the
Classification of Finite Simple Groups has the consequence that
every finite simple group is 2-generated.

But much more is true, and this is best explained in terms of a
graph. We say a graph has spread k if any k vertices have a
common neighbour. Thus “spread 1” means “no isolated
vertices”, but “spread 2” is much stronger, since it implies
diameter at most 2.
Generating graphs of finite simple groups were shown by
Breuer, Guralnick and Kantor to have spread 1; recently,
Burness, Guralnick and Harper showed that they have spread 2
(and indeed showed that these two properties are equivalent
for generating graphs, and characterised groups having them).
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What are we looking for?

Despite their differences, I think that graphs and groups have a
lot to offer each other. I will focus on three general questions:

▶ We learn new results about groups.
▶ Using graphs we can characterise some important classes

of groups.
▶ We might find some beautiful graphs in the process.

I hope to show you, at least briefly, examples of all three of
these topics. In the picture I am trying to paint, these three will
be the most prominent features.
There has been a lot of work on computing many different
graph-theoretic parameters of some of the graphs. This is
important work, but I regard it as more in the nature of filling
in detail in the background of the picture.



What are we looking for?

Despite their differences, I think that graphs and groups have a
lot to offer each other. I will focus on three general questions:
▶ We learn new results about groups.

▶ Using graphs we can characterise some important classes
of groups.

▶ We might find some beautiful graphs in the process.
I hope to show you, at least briefly, examples of all three of
these topics. In the picture I am trying to paint, these three will
be the most prominent features.
There has been a lot of work on computing many different
graph-theoretic parameters of some of the graphs. This is
important work, but I regard it as more in the nature of filling
in detail in the background of the picture.



What are we looking for?

Despite their differences, I think that graphs and groups have a
lot to offer each other. I will focus on three general questions:
▶ We learn new results about groups.
▶ Using graphs we can characterise some important classes

of groups.

▶ We might find some beautiful graphs in the process.
I hope to show you, at least briefly, examples of all three of
these topics. In the picture I am trying to paint, these three will
be the most prominent features.
There has been a lot of work on computing many different
graph-theoretic parameters of some of the graphs. This is
important work, but I regard it as more in the nature of filling
in detail in the background of the picture.



What are we looking for?

Despite their differences, I think that graphs and groups have a
lot to offer each other. I will focus on three general questions:
▶ We learn new results about groups.
▶ Using graphs we can characterise some important classes

of groups.
▶ We might find some beautiful graphs in the process.

I hope to show you, at least briefly, examples of all three of
these topics. In the picture I am trying to paint, these three will
be the most prominent features.
There has been a lot of work on computing many different
graph-theoretic parameters of some of the graphs. This is
important work, but I regard it as more in the nature of filling
in detail in the background of the picture.



What are we looking for?

Despite their differences, I think that graphs and groups have a
lot to offer each other. I will focus on three general questions:
▶ We learn new results about groups.
▶ Using graphs we can characterise some important classes

of groups.
▶ We might find some beautiful graphs in the process.

I hope to show you, at least briefly, examples of all three of
these topics. In the picture I am trying to paint, these three will
be the most prominent features.

There has been a lot of work on computing many different
graph-theoretic parameters of some of the graphs. This is
important work, but I regard it as more in the nature of filling
in detail in the background of the picture.



What are we looking for?

Despite their differences, I think that graphs and groups have a
lot to offer each other. I will focus on three general questions:
▶ We learn new results about groups.
▶ Using graphs we can characterise some important classes

of groups.
▶ We might find some beautiful graphs in the process.

I hope to show you, at least briefly, examples of all three of
these topics. In the picture I am trying to paint, these three will
be the most prominent features.
There has been a lot of work on computing many different
graph-theoretic parameters of some of the graphs. This is
important work, but I regard it as more in the nature of filling
in detail in the background of the picture.



New results about groups
The classic example of this is the 1955 paper by Brauer and
Fowler in which they showed that there are only finitely many
finite simple groups of even order which have a given
involution centralizer. With hindsight, this was the first step in
the thousand-mile journey to the Classification of the Finite
Simple Groups. Their proof involved bounding the diameter of
the commuting graph of such a group.

The results about spread mentioned earlier also use graph
theory to show that it is easy to generate a finite simple group
with two elements.
I will choose a different and much more recent example, taken
from a paper by Parthajit Bhowal, Rajat Kanti Nath, Benjamin
Sambale and me. This is a strengthening of a theorem of
Landau from 1903:

Theorem
Given a positive integer k, there are only finitely many finite groups
which have exactly k conjugacy classes.
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The solvable conjugacy class graph

Subsequent authors have bounded the order of such groups;
but our extension goes in a different direction.

Let G be a finite group. The solvable conjugacy class graph of G
is the graph whose vertices are the conjugacy classes of
non-identity elements of G, two classes C and D adjacent if
there exist x ∈ C and y ∈ D such that ⟨x, y⟩ is a solvable group.
Thus the number of vertices of the graph is one less than the
number of conjugacy classes of G, and by Landau’s theorem,
this number bounds |G|.

Theorem
Given a positive integer k, there are only finitely many finite groups
whose solvable conjugacy class graph has clique number k.
We do not have a good bound for the order of such a group.
Also, our proof uses the Classification of Finite Simple Groups,
in a “light-touch” way; we do not know if this can be avoided.
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Characterizing classes of groups

There are two ways in which graphs can be used to
characterize interesting classes of groups:

▶ Choose a famous class of graphs, such as perfect graphs,
and ask when a certain type of graph defined on groups
belongs to this class.

▶ Choose two different types of graphs defined on groups,
and ask for which groups these two graphs coincide.

I will give two examples of the second way. There are results on
the first as well: for example, Pallabi Manna, Ranjit Mehatari
and I studied groups whose power graph is a cograph (that is,
contains no induced 4-vertex path); and Xuanlong Ma, Natalia
Maslova and I have similar results for the commuting graph.
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Power graph and enhanced power graph

These two graphs have as vertices the elements of G. The
power graph of G, two vertices joined if one is a power of the
other; in the enhanced power graph, two vertices are joined if
both are powers of the same element. Thus, the power graph is
a spanning subgraph of the enhanced power graph.

The Gruenberg–Kegel graph of G has vertices the prime
divisors of |G|, with an edge from p to q if G contains an
element of order pq.
A group G is called an EPPO group if every element has prime
power order. These were first investigated by Higman in the
1950s, who found the solvable EPPO groups; in the 1960s,
Suzuki found the simple ones; and in 1981, Brandl found all
these groups.
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A theorem

Theorem
For the finite group G, the following properties are equivalent:

▶ G is an EPPO group;
▶ the Gruenberg–Kegel graph of G has no edges;
▶ the power graph and enhanced power graph of G are equal.

In general, these two graphs can be expected to be not very
different. For example, Swathi V V, M S Sunitha and I showed
that they have the same matching number. I will return to this
point later.
Our proof, incidentally, resembles a classic alternating-paths
argument from matching theory.
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Super graphs on groups

In a paper with G. Arunkumar, Rajat Kanti Nath and Lavanya
Selvaganesh, we proposed the following definition. If Γ is a
type of graph defined on groups, then there is a super version
of Γ, in which two elements x and y are joined if there exist
conjugates x′ and y′ of x and y which are joined in Γ. (This is the
conjugacy supergraph; a similar construction applies for other
equivalence relations.)

A Dedekind group is a group in which every subgroup is
normal. Dedekind showed that such a finite group is either
abelian, or of the form Q × A × B, where Q is the quaternion
group of order 8, A an elementary abelian 2-group, and B an
abelian group of odd order.

Theorem
Let G be a finite group. Then the power graph and super power graph
of G are equal if and only if G is a Dedekind group. The same holds
for the enhanced power graph and the super enhanced power graph.
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Super graphs, 2

A group G is a 2-Engel group if it satisfies the identity
[x, y, y] = 1 for all x, y ∈ G, where [x, y] is the commutator
x−1y−1xy, and [x, y, z] = [[x, y], z].

A nilpotent group of class 2 satisfies the identity [x, y, z] = 1 for
all x, y, z ∈ G, so is obviously 2-Engel. In the other direction,
Hopkins and Levi independently showed that a 2-Engel group
is nilpotent of class 3, and is “close” to being nilpotent of
class 2.

Theorem
The finite group G has commuting graph equal to super commuting
graph if and only if G is a 2-Engel group.
I will give the proof on the next slide.
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A proof

We use the fact, due to W. Kappe, that a group is 2-Engel if and
only if every centraliser is a normal subgroup.

Suppose that the commuting graph of G is equal to the
conjugacy supercommuting graph. If x and y commute, then
they are joined in the commuting graph, and hence in the
supercommuting graph; thus every conjugate of y commutes
with x. So CG(x) is a union of conjugacy classes, and hence is
normal in G. By the above result, G is 2-Engel.
The argument straightforwardly reverses.
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Groups with isomorphic commuting graph

Another way to define a class of groups is to specify a graph
type and ask for all pairs of groups for which these graphs are
isomorphic.

Commutation in a group G is a map from
(G/Z(G))× (G/Z(G)) to G′. Two groups G and H are isoclinic
if there are isomorphisms α : G/Z(G) → H/Z(H) and
β : G′ → H′ so that [g1Z(G)α, g2Z(G)α] = [g1, g2]β.
It is easy to see that isoclinic groups of the same order have
isomorphic commuting graphs. What about the converse?
Vikramin Arvind and I conjectured that the converse is true for
nilpotent groups of class 2. It is true for extraspecial p-groups,
and there is a polynomial-time algorithm to construct the
group from the graph.
However, it fails for class 3. Let G be SmallGroup(64,182) in
the GAP library. Then G × C2 has the same commuting graph as
any Schur cover of G, although it is not isoclinic to any of them.
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Power graph and enhanced power graph, again

We saw that these graphs are in some sense fairly close; for
example, they have the same matching number. They are quite
similar in other ways. For example, consider clique number.

▶ The clique number of the enhanced power graph of G is
the largest order of an element of G. (A maximal clique in
the enhanced power graph is a maximal cyclic subgroup.)

▶ Let f (n) be the clique number of the power graph of a
cyclic group of order n. Then the clique number of the
power graph of G is the maximum value of f (n) as n runs
over all orders of elements of G.

We have f (n) ≥ ϕ(n), where ϕ is Euler’s function. This is not
too much smaller than n (it is bounded below by cn/ log log n),
so the clique numbers of the two graphs are not too far apart.
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A small detour
I can’t resist mentioning a cute result here. Let f (n) be the
clique number of the power graph of a cyclic group of order n.
This is an arithmetic function of n, and was calculated by
Alireza, Ahmad and Abbas. But there is a nice estimate for it:

ϕ(n) ≤ f (n) ≤ cϕ(n),

where c = 2.6481017597 . . .; we might challenge number
theorists to understand this number better!

Another feature of these two graphs is that their complements
contain graphs defined in terms of minimal generating sets for
the group, the so-called independence graph and rank graph. I
will not define these here. I will mention that Saul Freedman,
Andrea Lucchini, Daniele Nemmi, and Colva Roney-Dougal
have determined the groups for which the independence graph
is the complement of the power graph, or the rank graph is the
complement of the enhanced power graph.
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The difference graph

If the power graph and enhanced power graph are close
together, we would expect the difference graph D(G) (whose
edges are the edges of the enhanced power graph not in the
power graph) to be fairly sparse and possibly interesting.

Motivated by this, Sucharita Biswas, Angsuman Das, Hiranya
Kishore Dey and I decided to look at the difference graph,
where we might possibly find graphs useful to network
theorists.
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Finding the jewel in the lotus

From some points of view, graphs defined on groups have a lot
of irrelevant rubbish; sometimes it is possible to strip it away
and reveal some beautiful graphs.

A lotus flower is a flower of exuberant beauty, but it quickly
loses its petals to leave something more austere.
Nearly ten years ago, Colva Roney-Dougal and I noticed that
the automorphism group of the generating graph of A5 (a
group of order 60) has order 23482733690880. This impressively
large group can almost all be stripped away.
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Finding the jewel in the lotus, 2

Two vertices x and y of a graph Γ are twins if they have the
same neighbours, apart possibly from one another. (Thus there
are two kinds of twins; but this will not bother us.) Twin
reduction is the process of repeatedly identifying twin vertices
until no twins remain. It is not hard to show that the result of
this process, up to isomorphism, does not depend on the order
of the reductions. I will call this result the cokernel of Γ.
Recall that Γ is a cograph if it contains no induced 4-vertex
path.

Proposition

The cokernel of Γ is the 1-vertex graph if and only Γ is a cograph.
Note that I have invented my own terminology here.
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Finding the jewel in the lotus, 3

Graphs defined on groups tend to have many twins: if x has
order greater than 2, then usually x and xd are twins for any d
coprime to the order of x. So we should apply twin reduction,
and reach the cokernel of G.

We applied this process to the difference graph D(G) of a group
G, the graph whose edges are the edges of the enhanced power
graph which are not in the power graph. We expect this to be a
fairly sparse graph and potentially to contain interesting stuff.
But, as I said, I would expect this process to work for most
types of graphs in groups.
Also we have only applied it to simple groups, though I am
sure that there are interesting things to be found in various
non-simple groups.
At this stage, we are doing “experimental mathematics”.
Empirically, simple groups G seem to fall into four types, as on
the next slide.
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Finding the jewel in the lotus, 4

▶ Type 1: G is an EPPO group. Then D(G) has no edges. The
simple groups are a few PSL(2, q) and Sz(q) together with
PSL(3, 4).

▶ Type 2: D(G) is a cograph, so its cokernel has a single
vertex. This includes some further PSL(2, q) and Sz(q).

▶ Type 3: The cokernel of D(G) consists of a large number of
isomorphic small graphs, e.g. 253 or 325 copies of K5 − P4
in PSL(2, 23) and PSL(2, 25) respectively.

▶ Type 4: an interesting connected graph typically with large
girth. I give a few examples on the next slide.

But I am sure there is much more to be found. Please try your
hand!
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Three jewels

The three beautiful examples we found all happen to be
bipartite. I don’t know why.

▶ Let G = PSL(3, 3). Then the cokernel of D(G) is the
following graph defined in the projective plane of order 3.
The vertices are the ordered pairs (P, L) where P is a point
and L a line. These are of two types: flags (where P and L
are incident) and antiflags (where they are not). All edges
join a flag to an antiflag; the antiflag (P, L) is incident with
the flags (Q, M) where P is incident with M and Q with L.
This graph has diameter 5 and girth 6, and 169 vertices.
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▶ Let G be the Mathieu group M11. Then the cokernel of
D(G) is a graph on 385 vertices; it is bipartite, with parts of
size 165 and 220 (each of these sets an orbit of the
automorphism group, which is just M11), and has diameter
10 and girth 10. The valencies of vertices in the two parts
are 4 and 3 respectively.

▶ The (non-simple) Ree group R1(3) ∼= PΓL(2, 8) gives a
semiregular bipartite graph on 63 + 84 vertices, with
valencies 4 and 3, with diameter 5 and girth 6.
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Other graphs

There is a lot of room for exploration here. Choose other basic
graphs on groups, or differences between graphs, and explore
whether they also give rise to interesting graphs by twin
reduction.

Sometimes we have to dig a little deeper. The same graph
obtained from the difference graph of M11 above can also be
obtained from the power graph, but we have to perform
further reductions to get it.
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. . . for your attention.


