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Summary

For most of my career, I have worked mostly in discrete
mathematics.

But I began life as an algebraist.
I want to tell you three stories about places where algebra and
discrete mathematics have come together profitably. I had
some part in all three of these. The topics are
1. Root systems and graph spectra.
2. The countable random graph and the Urysohn space.
3. A beautiful graph from the Mathieu group M11.

I can’t say much about each of these but I hope to give you a
little taste. The topics will be separated by pictures of bridges;
these tell you that, if you have lost the thread, you can now
pick up a new thread.
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1. Graph spectra and root systems

In the 1950s and 1960s, there was a lot of work by Hoffman,
Ray-Chaudhuri, Shrikhande, Chang, Seidel, and others about
this class of graphs.

Hoffman formulated a conjecture that a “sufficiently large” (in
some sense) graph with smallest eigenvalue −2 or greater was
a generalized line graph, a class of graphs which he devised.
He worked long on this problem but was unable to complete
the proof.
The line graph L(G) of a graph G is the graph whose vertices
are the edges of G, two vertices of L(G) joined if the
corresponding edges of G share a vertex.
A cocktail party graph CP(n) is a graph on 2n vertices ai, bi
with all pairs of vertices joined except ai and bi.
A generalized line graph is obtained from a line graph by
attaching a cocktail party graph associated with each vertex.
The next slide shows an example.
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A generalized line graph
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The red part is the line graph L(G); the blue shows the added
cocktail party graphs.
Hoffman’s conjecture is true in a strong sense. But the proof (by
Jean-Marie Goethals, Jaap Seidel, Ernie Shult, and me) came
from a completely different direction, using the theory of root
systems.
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Root systems

Root systems are beautiful geometrical objects, which have
been compared to multidimensional crystals.
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They arose first in the theory of Lie algebras, but now occur
everywhere from singularity theory to general relativity, from
cluster algebras to finite simple groups.
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The definition

A root system is a finite set S of vectors spanning the real vector
space Rd and having the properties

▶ if v ∈ S, then λv ∈ S if and only if λ = ±1;
▶ S is closed under reflection in the hyperplane

perpendicular to any of its vectors.
There is another condition often imposed, which makes the
root system even more crystal-like by ensuring that the integer
combinations of its vectors form a lattice. This will hold in the
case of interest here.
The important case for us is when all the vectors in S have the
same length. In this case, the angle between any two roots is
60◦, 90◦, 120◦, or 180◦.
We call the root system indecomposable if the space is not an
orthogonal direct sum of two subspaces which contain all the
vectors of S.
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The ADE classification

Theorem
An indecomposable root system with all roots of the same length is of
one of the types Ad (d ≥ 1), Dd (d ≥ 4), E6, E7, E8. (The subscript
denotes the dimension.)

The systems are explicitly known and are easy to work with.
These particular systems are ubiquitous in mathematics. A
forthcoming book “ADE: Patterns in Mathematics” by Pierre
Dechant, Yang He, John McKay and me traces some of their
many occurrences in different parts of our subject.
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The theorem

Theorem
A connected finite graph with smallest eigenvalue −2 or greater is
either a generalized line graph or represented by a subset of the root
system E8.

Here is a sketch proof. Let A be the adjacency matrix. Then
2I + A is positive semi-definite, and so is the matrix of inner
products of a set of vectors in a real vector space. These vectors
all have length

√
2 and any two make angles of 90◦ or 60◦.

A geometric argument shows that such a set can be enlarged to
a maximal set with angles 0◦, 60◦, 90◦, 120◦ or 180◦, which is a
root system of type A, D or E. So the graph is “represented” in
such a root system.
Now the following observations finish the job:
▶ Ad ⊆ Dd+1 and E6 ⊆ E7 ⊆ E8, so our graph lives in either

Dd (for some d) or E8;
▶ a graph represented in Dd is a generalized line graph.
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The exceptions

Since E8 is a finite object, it can only represent finitely many
graphs.

These include many famous graphs, including the Petersen,
Clebsch, Shrikhande, Schläfli and three Chang graphs.

The Shrikhande graph (thanks to Ambat Vijayakumar)
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Howrah bridge, Kolkata



2. The random graph and the Urysohn space

How to choose a random graph? The simplest model: start
with the set of vertices, for each pair toss a fair coin to decide
whether to join them with an edge.

In 1959, Erdős and Rényi showed that almost all finite graphs
have no non-trivial symmetry, indeed lie “as far as possible”
from symmetry.
This began a huge topic, random graphs. But as a tailpiece,
they showed that the result is false for countably infinite
graphs. With probability 1, a random countable graph has
infinitely many automorphisms.
The reason for this is even more surprising.
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The random graph

Theorem
There exists a countable graph R with the properties:

▶ R is universal: every finite or countable graph is embeddable in
R as induced subgraph.

▶ R is homogeneous: every isomorphism between finite induced
subgraphs can be extended to an automorphism of R.

▶ With probability 1, a countable random graph is isomorphic to R.

The Erdős–Rényi proof is a nonconstructive existence proof: if
something occurs with probability 1, it certainly occurs. But at
almost the same time, Rado constructed a countable universal
graph which turned out to be R. His construction was as
follows. The vertex set is the set N of natural numbers
(including 0). Given x and y, with x < y, write y in base 2: now
join x and y if and only if the x-th digit of y is 1.
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graph which turned out to be R. His construction was as
follows. The vertex set is the set N of natural numbers
(including 0). Given x and y, with x < y, write y in base 2: now
join x and y if and only if the x-th digit of y is 1.
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Fräıssé

In fact, more than ten years earlier, the French logician Roland
Fraı̈ssé had given a construction including the graph R as a
special case.

Fraı̈ssé’s topic was relational structures, sets with a specified
collection of relations of prescribed arity. As well as graphs,
think digraphs, total or partial orders, hypergraphs, etc.
Fraı̈ssé gave a necessary and sufficient condition for a class A
of finite structures to be all the finite structures embeddable (as
induced substructure) in a countable homogeneous structure
M. Moreover, if M exists, then it is unique. It is now called the
Fraı̈ssé limit of the class A.
Thus, the Fraı̈ssé limit of the class of finite graphs is the
random graph R; the Fraı̈ssé limit of the class of finite total
orders is (Q,<).
But even Fraı̈ssé was not the first . . .
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Fraı̈ssé’s topic was relational structures, sets with a specified
collection of relations of prescribed arity. As well as graphs,
think digraphs, total or partial orders, hypergraphs, etc.
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Fräıssé
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Urysohn

In 1924, Pavel Alexandrov and Pavel Urysohn, the Soviet
pioneers of topology, came to western Europe for discussions
with Hilbert, Brouwer, Hausdorff, and others.

After this, the two went to south-west France for a holiday.
They swam in the sea every morning. One morning there was a
severe storm and they were advised not to swim, but went in
anyway. Alexandrov came back; Urysohn did not. He was 26.
He is known for several results in the foundations of topology,
but the theorem I will talk about was less well known; it was
published posthumously from the papers he left.
In 2000, I spoke about the random graph at the European
Congress of Mathematics in Barcelona. After the talk, I was
approached by someone who introduced himself as Anatoly
Vershik, and asked if I knew about the Urysohn space. This is a
Polish space (a complete second-countable metric space) which
is universal and homogeneous.
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The Urysohn space

We cannot apply Fraı̈ssé directly: there are too many finite
metric spaces (uncountably many two-point spaces).

Instead, we define a metric space to be rational if all distances
are rational numbers. The class of rational metric spaces
satisfies Fraı̈ssé’s theorem; its Fraı̈ssé limit is the rational
Urysohn space. Taking its completion in the usual sense (add
limits for Cauchy sequences) gives the real Urysohn space.
One can replace the rational numbers by other sets such as the
non-negative integers (giving the integral Urysohn space, a
distance-transitive graph) or the set {0, 1, 2}. Metric spaces
with distances {0, 1, 2} can be regarded as graphs (distance 1 is
adjacency) and conversely. Now the {0, 1, 2} Urysohn space is
the random graph R!
Vershik and I studied this and found various analogies
between the random graph and the Urysohn space.
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3. Graphs on groups
In 1955, Brauer and Fowler published a paper which, with
hindsight, was the first step towards the classification of the
finite simple groups. They proved that there are only finitely
many simple groups of even order containing an involution (an
element of order 2) with a prescribed centralizer. The “even
order” provision was needed because this predates the famous
Feit–Thompson theorem that a non-abelian finite simple group
must necessarily have even order.

Though the word “graph” does not occur in the paper, the
main tool they used was the commuting graph of the group,
the graph whose vertices are the non-identity elements, two
vertices x and y joined if they commute (that is, xy = yx).
Since then, several more graphs on groups have been defined
and studied, and many interactions found. (I must thank my
friend Ambat Vijayakumar for organising a study group in
2021 which led to much of this research, as well as many
colleagues, in India and elsewhere, who have collaborated with
me on this.)
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The difference graph
I will not attempt a survey, but turn immediately to one type of
graph, studied by Sucharita Biswas, Angsuman Das, Hiranya
Kishore Dey and me.

Given a finite group G, the following graphs have vertex set G.
▶ In the power graph, x is joined to y if one of x and y is a

power of the other.
▶ In the enhanced power graph, x is joined to y if both x and

y are powers of an element z.
▶ The power graph is a spanning subgraph of the enhanced

power graph; in the difference graph, x and y are joined if
they are joined in the enhanced power graph but not in the
power graph. I denote it D(G).

It may happen that the power graph and enhanced power
graph coincide, so that the difference graph is null. Groups
with these properties are called EPPO groups, those in which
every element has prime power order. They were determined
by the efforts of Higman, Suzuki and Brandl.
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Twin reduction

Two vertices of a graph are twins if they have the same
neighbours (possibly excepting each other). The process of
twin reduction consists of repeatedly choosing a pair of twins
and identifying them until no twins remain. The result of twin
reduction is unique up to isomorphism, independent of the
order of the process.

A graph Γ is a cograph if it contains no induced 4-vertex path.
For any graph Γ, the following are equivalent:
▶ Γ is a cograph;
▶ Γ can be built from 1-vertex graphs by the operations of

disjoint union and complementation;
▶ twin reduction converts Γ to a 1-vertex graph.

It is an open problem which groups have the property that
their difference graph is a cograph.
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The jewel in the lotus

Twin reduction is like the stripping away of lotus petals.
Maybe nothing remains; but in interesting cases we may find a
beautiful jewel.

One such case is the Mathieu group M11, a simple group of
order 7920. Twin reduction yields a graph Γ on 385 vertices
which has some remarkable properties:
▶ Γ is bipartite, with bipartite blocks of sizes 165 and 220.
▶ Γ is semiregular; the valencies of vertices in the two

bipartite blocks are 4 and 3 respectively.
▶ Γ has diameter 10 and girth 10.
▶ The automorphism group of Γ is the Mathieu group M11.
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What next?

There are many groups, several graphs defined on groups, and
a few different ways of “reducing” a graph in addition to twin
reduction. So there is plenty more to explore. I invite you all to
help explore this and find more beautiful graphs.

One curiosty. I have tried three different graphs and various
reduction methods on the group M11. All methods seem to give
the same example. I do not know why.
Also, it would be good to explore this beautiful graph further.
But that is the end of my story.

. . . for your attention.



What next?

There are many groups, several graphs defined on groups, and
a few different ways of “reducing” a graph in addition to twin
reduction. So there is plenty more to explore. I invite you all to
help explore this and find more beautiful graphs.
One curiosty. I have tried three different graphs and various
reduction methods on the group M11. All methods seem to give
the same example. I do not know why.

Also, it would be good to explore this beautiful graph further.
But that is the end of my story.

. . . for your attention.



What next?

There are many groups, several graphs defined on groups, and
a few different ways of “reducing” a graph in addition to twin
reduction. So there is plenty more to explore. I invite you all to
help explore this and find more beautiful graphs.
One curiosty. I have tried three different graphs and various
reduction methods on the group M11. All methods seem to give
the same example. I do not know why.
Also, it would be good to explore this beautiful graph further.

But that is the end of my story.

. . . for your attention.



What next?

There are many groups, several graphs defined on groups, and
a few different ways of “reducing” a graph in addition to twin
reduction. So there is plenty more to explore. I invite you all to
help explore this and find more beautiful graphs.
One curiosty. I have tried three different graphs and various
reduction methods on the group M11. All methods seem to give
the same example. I do not know why.
Also, it would be good to explore this beautiful graph further.
But that is the end of my story.

. . . for your attention.


