Covers of sets of groups

Peter J. Cameron, University of St Andrews

Algebra and Combinatorics Seminar 18 January 2024

Cauchy's theorem for the prime 6

Cauchy's theorem says that, if a prime p divides the order of a finite group G, then G contains a subgroup isomorphic to C_{p} (the cyclic group of order p).

Cauchy's theorem for the prime 6

Cauchy's theorem says that, if a prime p divides the order of a finite group G, then G contains a subgroup isomorphic to C_{p} (the cyclic group of order p).
One of our new results is the following:
Theorem
If 6 divides the order of a finite group G, then G contains a subgroup isomorphic to C_{6}, D_{6} (the dihedral group of order 6), or A_{4} (the alternating group of degree 4).

Cauchy's theorem for the prime 6

Cauchy's theorem says that, if a prime p divides the order of a finite group G, then G contains a subgroup isomorphic to C_{p} (the cyclic group of order p).
One of our new results is the following:
Theorem
If 6 divides the order of a finite group G, then G contains a subgroup isomorphic to C_{6}, D_{6} (the dihedral group of order 6), or A_{4} (the alternating group of degree 4).
More about this later ...

History

There are still elementary questions about finite groups which have not yet been explored.

History

There are still elementary questions about finite groups which have not yet been explored.
This research began on 16 October 2023, when Hamid Reza Dorbidi (Jiroft) sent me a preliminary manuscript. We worked on it, and put a paper on the arXiv the following month (2311.16562).

History

There are still elementary questions about finite groups which have not yet been explored.
This research began on 16 October 2023, when Hamid Reza Dorbidi (Jiroft) sent me a preliminary manuscript. We worked on it , and put a paper on the arXiv the following month (2311.16562).

David Craven (Birmingham) and Benjamin Sambale (Heidelberg) saw it on the arXiv and contributed a number of improvements, so we invited them to join the team.

History

There are still elementary questions about finite groups which have not yet been explored.
This research began on 16 October 2023, when Hamid Reza Dorbidi (Jiroft) sent me a preliminary manuscript. We worked on it , and put a paper on the arXiv the following month (2311.16562).

David Craven (Birmingham) and Benjamin Sambale (Heidelberg) saw it on the arXiv and contributed a number of improvements, so we invited them to join the team.
We are about to submit a revised version to the arXiv.

The problem

There has been a great deal of interest among finite group theorists in describing the subgroups of a given group, in particular the maximal subgroups. Colva's book (with John Bray and Derek Holt) is an important example.

The problem

There has been a great deal of interest among finite group theorists in describing the subgroups of a given group, in particular the maximal subgroups. Colva's book (with John Bray and Derek Holt) is an important example. Dorbidi's question was a kind of "inverse problem". Given a finite set \mathcal{F} of finite groups, call a group G a cover of \mathcal{F} if every group in \mathcal{F} can be embedded in G. What can we say about covers?

The problem

There has been a great deal of interest among finite group theorists in describing the subgroups of a given group, in particular the maximal subgroups. Colva's book (with John Bray and Derek Holt) is an important example. Dorbidi's question was a kind of "inverse problem". Given a finite set \mathcal{F} of finite groups, call a group G a cover of \mathcal{F} if every group in \mathcal{F} can be embedded in G. What can we say about covers?
In particular, let us call an \mathcal{F}-cover G cover minimal if no proper subgroup of G is an \mathcal{F}-cover, and minimum if no group of smaller order is an \mathcal{F}-cover. We are particularly interested in minimal and minimum \mathcal{F}-covers.

The problem

There has been a great deal of interest among finite group theorists in describing the subgroups of a given group, in particular the maximal subgroups. Colva's book (with John Bray and Derek Holt) is an important example. Dorbidi's question was a kind of "inverse problem". Given a finite set \mathcal{F} of finite groups, call a group G a cover of \mathcal{F} if every group in \mathcal{F} can be embedded in G. What can we say about covers?
In particular, let us call an \mathcal{F}-cover G cover minimal if no proper subgroup of G is an \mathcal{F}-cover, and minimum if no group of smaller order is an \mathcal{F}-cover. We are particularly interested in minimal and minimum \mathcal{F}-covers.
For any set \mathcal{F}, there is a minimal \mathcal{F}-cover: take the direct product of the groups in \mathcal{F} (this is a cover), and take a subgroup minimal with respect to embedding all the groups in \mathcal{F}.

Some guiding questions

Given a finite set \mathcal{F} of finite groups:

Some guiding questions

Given a finite set \mathcal{F} of finite groups:

- How large is a minimum \mathcal{F}-cover?

Some guiding questions

Given a finite set \mathcal{F} of finite groups:

- How large is a minimum \mathcal{F}-cover?
- If all the groups in \mathcal{F} have some property \mathcal{P}, is there at least one minimum \mathcal{F}-cover which has property \mathcal{P} ?

Some guiding questions

Given a finite set \mathcal{F} of finite groups:

- How large is a minimum \mathcal{F}-cover?
- If all the groups in \mathcal{F} have some property \mathcal{P}, is there at least one minimum \mathcal{F}-cover which has property \mathcal{P} ?
- Clearly \mathcal{F} has only finitely many minimum covers. Can it have infinitely many minimal covers?

Some guiding questions

Given a finite set \mathcal{F} of finite groups:

- How large is a minimum \mathcal{F}-cover?
- If all the groups in \mathcal{F} have some property \mathcal{P}, is there at least one minimum \mathcal{F}-cover which has property \mathcal{P} ?
- Clearly \mathcal{F} has only finitely many minimum covers. Can it have infinitely many minimal covers?
- Given a positive integer n, what is the size of a minimum $\mathcal{F}(n)$-cover, where $\mathcal{F}(n)$ consists of all the groups of order n ? (I will say simply an n-cover.)

Some guiding questions

Given a finite set \mathcal{F} of finite groups:

- How large is a minimum \mathcal{F}-cover?
- If all the groups in \mathcal{F} have some property \mathcal{P}, is there at least one minimum \mathcal{F}-cover which has property \mathcal{P} ?
- Clearly \mathcal{F} has only finitely many minimum covers. Can it have infinitely many minimal covers?
- Given a positive integer n, what is the size of a minimum $\mathcal{F}(n)$-cover, where $\mathcal{F}(n)$ consists of all the groups of order n ? (I will say simply an n-cover.)
I will say something about each of these questions.

Preliminary results

Cayley's Theorem tells us that
Theorem
The symmetric group S_{n} is an n-cover.

Preliminary results

Cayley's Theorem tells us that
Theorem
The symmetric group S_{n} is an n-cover.
Also Sylow's theorem tells us that
Theorem
Let $N=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$, where p_{1}, \ldots, p_{r} are distinct primes. Then, for each i, the Sylow p_{i}-subgroup of S_{n} is a $p_{i}^{a_{i}}$-cover.

Preliminary results

Cayley's Theorem tells us that
Theorem
The symmetric group S_{n} is an n-cover.
Also Sylow's theorem tells us that
Theorem
Let $N=p_{1}^{a_{1}} \cdots p_{r}^{q_{r}}$, where p_{1}, \ldots, p_{r} are distinct primes. Then, for each i, the Sylow p_{i}-subgroup of S_{n} is a $p_{i}^{a_{i}}$-cover.

In particular, if $n=p^{m}$ with p prime, then the Sylow p-subgroup of S_{n} is a p^{m}-cover, of order $p^{\left(p^{m}-1\right) /(p-1)}$.

Prime power order

This upper bound for the order of a p^{m}-cover is doubly exponential in m. By contrast, we have:

Prime power order

This upper bound for the order of a p^{m}-cover is doubly exponential in m. By contrast, we have:
Theorem
The order of a minimum p^{m}-cover (for p prime) is at least $p^{(2 / 27+o(1)) m^{2}}$.

Prime power order

This upper bound for the order of a p^{m}-cover is doubly exponential in m. By contrast, we have:
Theorem
The order of a minimum p^{m}-cover (for p prime) is at least $p^{(2 / 27+o(1)) m^{2}}$.
The proof uses the result of Higman and Sims for the number of groups of order p^{m}; a p-group embedding them all must be fairly large.

Prime power order

This upper bound for the order of a p^{m}-cover is doubly exponential in m. By contrast, we have:
Theorem
The order of a minimum p^{m}-cover (for p prime) is at least $p^{(2 / 27+o(1)) m^{2}}$.
The proof uses the result of Higman and Sims for the number of groups of order p^{m}; a p-group embedding them all must be fairly large.
Question
Is the order of a minimum p^{m}-cover of the form $p^{f(m)}$ where f is polynomial?

Prime power order

This upper bound for the order of a p^{m}-cover is doubly exponential in m. By contrast, we have:

Theorem

The order of a minimum p^{m}-cover (for p prime) is at least $p^{(2 / 27+o(1)) m^{2}}$.
The proof uses the result of Higman and Sims for the number of groups of order p^{m}; a p-group embedding them all must be fairly large.
Question
Is the order of a minimum p^{m}-cover of the form $p^{f(m)}$ where f is polynomial?
We know that the values for $p^{m}=2^{3}, 2^{4}, p^{3}$ (p an odd prime) are respectively $2^{5}, 2^{8}$, and p^{6} respectively.

Two primes

Let q and r be distinct primes. Does $\left\{C_{q}, C_{r}\right\}$ have finitely or infinitely many minimal covers?

Two primes

Let q and r be distinct primes. Does $\left\{C_{q}, C_{r}\right\}$ have finitely or infinitely many minimal covers?
For $\{q, r\}=\{2,3\}$, we show that the only minimal covers are C_{6}, D_{6} and A_{4}. This is the theorem with which I began. Sketch proof shortly.

Two primes

Let q and r be distinct primes. Does $\left\{C_{q}, C_{r}\right\}$ have finitely or infinitely many minimal covers?
For $\{q, r\}=\{2,3\}$, we show that the only minimal covers are C_{6}, D_{6} and A_{4}. This is the theorem with which I began. Sketch proof shortly.
If q and r are odd and at least one is greater than 5 , then there are infinitely many minimal covers.

Two primes

Let q and r be distinct primes. Does $\left\{C_{q}, C_{r}\right\}$ have finitely or infinitely many minimal covers?
For $\{q, r\}=\{2,3\}$, we show that the only minimal covers are C_{6}, D_{6} and A_{4}. This is the theorem with which I began. Sketch proof shortly.
If q and r are odd and at least one is greater than 5 , then there are infinitely many minimal covers.
For, by Dirichlet's Theorem, there are infinitely many primes p congruent to $1(\bmod q)$ and to $-1(\bmod r)$. Then $G=\operatorname{PSL}(2, p)$ is a $\left\{C_{q}, C_{r}\right\}$-cover. If $r>5$, then the only maximal subgroup of G containing C_{r} is D_{p+1}, which does not contain C_{q}. The argument is similar in the other case.

Two primes

Let q and r be distinct primes. Does $\left\{C_{q}, C_{r}\right\}$ have finitely or infinitely many minimal covers?
For $\{q, r\}=\{2,3\}$, we show that the only minimal covers are C_{6}, D_{6} and A_{4}. This is the theorem with which I began. Sketch proof shortly.
If q and r are odd and at least one is greater than 5 , then there are infinitely many minimal covers.
For, by Dirichlet's Theorem, there are infinitely many primes p congruent to $1(\bmod q)$ and to $-1(\bmod r)$. Then $G=\operatorname{PSL}(2, p)$ is a $\left\{C_{q}, C_{r}\right\}$-cover. If $r>5$, then the only maximal subgroup of G containing C_{r} is D_{p+1}, which does not contain C_{q}. The argument is similar in the other case.
Remaining pairs of primes have not yet been settled, but we hope to have a result shortly.

Sketch proof
Let G be a minimal $\left\{C_{q}, C_{r}\right\}$-cover.

Sketch proof

Let G be a minimal $\left\{C_{q}, C_{r}\right\}$-cover.

- If G is soluble, then it is one of three possibilities: $C_{q r}$, an elementary abelian q-group with C_{r} acting irreducibly on it, or an elementary abelian r-group with C_{q} acting irreducibly on it.

Sketch proof

Let G be a minimal $\left\{C_{q}, C_{r}\right\}$-cover.

- If G is soluble, then it is one of three possibilities: $C_{q r}$, an elementary abelian q-group with C_{r} acting irreducibly on it, or an elementary abelian r-group with C_{q} acting irreducibly on it.
- Otherwise, G has a unique maximal normal subgroup N, and G / N is a minimal $\left\{C_{q}, C_{r}\right\}$-cover.

Sketch proof

Let G be a minimal $\left\{C_{q}, C_{r}\right\}$-cover.

- If G is soluble, then it is one of three possibilities: $C_{q r}$, an elementary abelian q-group with C_{r} acting irreducibly on it, or an elementary abelian r-group with C_{q} acting irreducibly on it.
- Otherwise, G has a unique maximal normal subgroup N, and G / N is a minimal $\left\{C_{q}, C_{r}\right\}$-cover.
- Now take $\{q, r\}=\{2,3\}$. In 1977 (pre-CFSG), Podufalov showed that a simple group with no element of order 6 must be $\operatorname{PSL}(2, q), \operatorname{PSL}(3, q)$, $\operatorname{PSU}(3, q)$ or $\operatorname{Sz}(q)$ for some prime power q.

Sketch proof

Let G be a minimal $\left\{C_{q}, C_{r}\right\}$-cover.

- If G is soluble, then it is one of three possibilities: $C_{q r}$, an elementary abelian q-group with C_{r} acting irreducibly on it, or an elementary abelian r-group with C_{q} acting irreducibly on it.
- Otherwise, G has a unique maximal normal subgroup N, and G / N is a minimal $\left\{C_{q}, C_{r}\right\}$-cover.
- Now take $\{q, r\}=\{2,3\}$. In 1977 (pre-CFSG), Podufalov showed that a simple group with no element of order 6 must be $\operatorname{PSL}(2, q), \operatorname{PSL}(3, q)$, $\operatorname{PSU}(3, q)$ or $\operatorname{Sz}(q)$ for some prime power q.
- Suzuki groups can't occur since their orders are not divisible by 3 . The others all involve $\operatorname{PSL}(2, p)$, where q is a power of p.

Sketch proof

Let G be a minimal $\left\{C_{q}, C_{r}\right\}$-cover.

- If G is soluble, then it is one of three possibilities: $C_{q r}$, an elementary abelian q-group with C_{r} acting irreducibly on it, or an elementary abelian r-group with C_{q} acting irreducibly on it.
- Otherwise, G has a unique maximal normal subgroup N, and G / N is a minimal $\left\{C_{q}, C_{r}\right\}$-cover.
- Now take $\{q, r\}=\{2,3\}$. In 1977 (pre-CFSG), Podufalov showed that a simple group with no element of order 6 must be $\operatorname{PSL}(2, q), \operatorname{PSL}(3, q)$, $\operatorname{PSU}(3, q)$ or $\operatorname{Sz}(q)$ for some prime power q.
- Suzuki groups can't occur since their orders are not divisible by 3 . The others all involve $\operatorname{PSL}(2, p)$, where q is a power of p.
- $\operatorname{PSL}(2,3) \cong A_{4}$, while for other p they have D_{6} as a subgroup.

Minimal p^{m}-covers

It is not too hard to show that any minimal 2^{2}-cover has order 2^{3} (and indeed, there are just two, namely $C_{4} \times C_{2}$ and D_{8}), so that they are minimum covers.

Minimal p^{m}-covers

It is not too hard to show that any minimal 2^{2}-cover has order 2^{3} (and indeed, there are just two, namely $C_{4} \times C_{2}$ and D_{8}), so that they are minimum covers.
However, we have:
Theorem
There are infinitely many minimal 2^{3}-covers. Indeed, for any $m \geq 4$, the group $S D_{2^{m}} \times C_{2}$ is a minimal 2^{3}-cover.

Minimal p^{m}-covers

It is not too hard to show that any minimal 2^{2}-cover has order 2^{3} (and indeed, there are just two, namely $C_{4} \times C_{2}$ and D_{8}), so that they are minimum covers.
However, we have:
Theorem
There are infinitely many minimal 2^{3}-covers. Indeed, for any $m \geq 4$, the group $S D_{2^{m}} \times C_{2}$ is a minimal 2^{3}-cover.
Here $S D_{2^{m}}$ is the semi-dihedral group

$$
\left\langle a, b: a^{a^{m-1}}=b^{2}=1, b^{-1} a b=a^{2^{m-2}-1}\right\rangle .
$$

Nilpotent groups

Theorem
Let \mathcal{F} be a set of finite nilpotent groups. Then there is a minimum \mathcal{F}-cover which is nilpotent.

Nilpotent groups

Theorem

Let \mathcal{F} be a set of finite nilpotent groups. Then there is a minimum \mathcal{F}-cover which is nilpotent.
To see this, just take the direct product of \mathcal{F}_{p}-covers, where \mathcal{F}_{p} is the set of Sylow p-subgroups of the groups in \mathcal{F} for all relevant primes.

Nilpotent groups

Theorem

Let \mathcal{F} be a set of finite nilpotent groups. Then there is a minimum \mathcal{F}-cover which is nilpotent.
To see this, just take the direct product of \mathcal{F}_{p}-covers, where \mathcal{F}_{p} is the set of Sylow p-subgroups of the groups in \mathcal{F} for all relevant primes.
Of course we cannot say that all minimum \mathcal{F}-covers are nilpotent. For example, if $\mathcal{F}=\left\{\left(C_{2}\right)^{2}, C_{3}, C_{5}\right\}$, then a minimum \mathcal{F}-cover has order 60, and any group of order 60 having these as its Sylow subgroups is an \mathcal{F}-cover, including the simple group A_{5}.

Abelian groups

For abelian groups, the position is very different. We can work out the order of the smallest abelian cover of any set of finite abelian groups; but we cannot prove that at least one minimum cover must be abelian!

Abelian groups

For abelian groups, the position is very different. We can work out the order of the smallest abelian cover of any set of finite abelian groups; but we cannot prove that at least one minimum cover must be abelian!
Arguing as in the last theorem, it suffices to find the smallest cover of a set \mathcal{F} of abelian p-groups, where p is prime.

Abelian groups

For abelian groups, the position is very different. We can work out the order of the smallest abelian cover of any set of finite abelian groups; but we cannot prove that at least one minimum cover must be abelian!
Arguing as in the last theorem, it suffices to find the smallest cover of a set \mathcal{F} of abelian p-groups, where p is prime.
Any such group has a canonical form

$$
G=C_{p^{a_{1}}} \times \cdots \times C_{p^{a_{r}}}
$$

where $a_{1} \geq \cdots \geq a_{r}$. Now given a set of finite abelian p-groups, we can write them all in canonical form and assume that the value of r is the same for each (by adding trivial factors if necessary). Then the smallest abelian cover has canonical form whose i th factor is the largest group occurring as the i th factor of one of the groups in \mathcal{F}.

As a corollary, we can show the following.

As a corollary, we can show the following. Define a function f on the natural numbers by

$$
f(n)=\sum_{k=1}^{n}\left\lfloor\frac{n}{k}\right\rfloor
$$

As a corollary, we can show the following. Define a function f on the natural numbers by

$$
f(n)=\sum_{k=1}^{n}\left\lfloor\frac{n}{k}\right\rfloor .
$$

This function was considered by Dirichlet, who showed that $f(n)=n(\log n+2 \gamma-1)+O(\sqrt{n})$, where γ is the Euler-Mascheroni constant. It is given as sequence A006218 in the On-Line Encyclopedia of Integer Sequences, where a number of occurrences of it are noted. But the one given here seems to be new.

As a corollary, we can show the following. Define a function f on the natural numbers by

$$
f(n)=\sum_{k=1}^{n}\left\lfloor\frac{n}{k}\right\rfloor .
$$

This function was considered by Dirichlet, who showed that $f(n)=n(\log n+2 \gamma-1)+O(\sqrt{n})$, where γ is the Euler-Mascheroni constant. It is given as sequence A006218 in the On-Line Encyclopedia of Integer Sequences, where a number of occurrences of it are noted. But the one given here seems to be new.

Theorem
The smallest order of an abelian group containing every abelian group of order p^{n} is $p^{f(n)}$.

As a corollary, we can show the following. Define a function f on the natural numbers by

$$
f(n)=\sum_{k=1}^{n}\left\lfloor\frac{n}{k}\right\rfloor .
$$

This function was considered by Dirichlet, who showed that $f(n)=n(\log n+2 \gamma-1)+O(\sqrt{n})$, where γ is the Euler-Mascheroni constant. It is given as sequence A006218 in the On-Line Encyclopedia of Integer Sequences, where a number of occurrences of it are noted. But the one given here seems to be new.

Theorem

The smallest order of an abelian group containing every abelian group of order p^{n} is $p^{f(n)}$.
This is proved by applying the preceding theorem, first computing that the largest size of the k th component in the canonical form of an abelian group of order p^{n} is $p^{\lfloor n / k\rfloor}$.

Questions and answers

Let \mathcal{P} be a property of finite groups. If \mathcal{F} is a finite set of finite groups, does there exist a minimum \mathcal{F}-cover with property \mathcal{P} ?

Questions and answers

Let \mathcal{P} be a property of finite groups. If \mathcal{F} is a finite set of finite groups, does there exist a minimum \mathcal{F}-cover with property \mathcal{P} ?

- Cyclic: Yes (the cyclic group whose order is the least common multiple of the groups in \mathcal{F} does the job).

Questions and answers

Let \mathcal{P} be a property of finite groups. If \mathcal{F} is a finite set of finite groups, does there exist a minimum \mathcal{F}-cover with property \mathcal{P} ?

- Cyclic: Yes (the cyclic group whose order is the least common multiple of the groups in \mathcal{F} does the job).
- Abelian: Don't know.

Questions and answers

Let \mathcal{P} be a property of finite groups. If \mathcal{F} is a finite set of finite groups, does there exist a minimum \mathcal{F}-cover with property \mathcal{P} ?

- Cyclic: Yes (the cyclic group whose order is the least common multiple of the groups in \mathcal{F} does the job).
- Abelian: Don't know.
- Nilpotent: Yes (we saw this earlier).

Questions and answers

Let \mathcal{P} be a property of finite groups. If \mathcal{F} is a finite set of finite groups, does there exist a minimum \mathcal{F}-cover with property \mathcal{P} ?

- Cyclic: Yes (the cyclic group whose order is the least common multiple of the groups in \mathcal{F} does the job).
- Abelian: Don't know.
- Nilpotent: Yes (we saw this earlier).
- Soluble: No (proof coming up).

Questions and answers

Let \mathcal{P} be a property of finite groups. If \mathcal{F} is a finite set of finite groups, does there exist a minimum \mathcal{F}-cover with property \mathcal{P} ?

- Cyclic: Yes (the cyclic group whose order is the least common multiple of the groups in \mathcal{F} does the job).
- Abelian: Don't know.
- Nilpotent: Yes (we saw this earlier).
- Soluble: No (proof coming up).
- Simple: See later.

Questions and answers

Let \mathcal{P} be a property of finite groups. If \mathcal{F} is a finite set of finite groups, does there exist a minimum \mathcal{F}-cover with property \mathcal{P} ?

- Cyclic: Yes (the cyclic group whose order is the least common multiple of the groups in \mathcal{F} does the job).
- Abelian: Don't know.
- Nilpotent: Yes (we saw this earlier).
- Soluble: No (proof coming up).
- Simple: See later.

For soluble groups, take $\mathcal{F}=\left\{D_{10}, A_{4}\right\}$. The least common multiple of their orders is 60 , and it is an easy exercise to show that the only group of order 60 containing both is A_{5}.

Simple groups

Theorem
Let M and N be simple groups. Then a minimum cover of $\{M, N\}$ is either simple or $M \times N$.

Simple groups

Theorem
Let M and N be simple groups. Then a minimum cover of $\{M, N\}$ is either simple or $M \times N$.
Both cases occur:
Example Let $M=A_{5}$ and $N=\operatorname{PSL}(2,8)$. The orders of these groups are 60 and 504. Their least common multiple is 2520 and their product is 30240 . The only simple groups with order divisible by 2520 and not greater than 30240 are A_{7}, A_{8} and $\operatorname{PSL}(3,4)$; none of these embed $\operatorname{PSL}(2,8)$. By the theorem, the unique minimum $\{M, N\}$-cover is $M \times N$.

Simple groups

Theorem
Let M and N be simple groups. Then a minimum cover of $\{M, N\}$ is either simple or $M \times N$.
Both cases occur:
Example Let $M=A_{5}$ and $N=\operatorname{PSL}(2,8)$. The orders of these groups are 60 and 504. Their least common multiple is 2520 and their product is 30240 . The only simple groups with order divisible by 2520 and not greater than 30240 are A_{7}, A_{8} and $\operatorname{PSL}(3,4)$; none of these embed $\operatorname{PSL}(2,8)$. By the theorem, the unique minimum $\{M, N\}$-cover is $M \times N$.
Example Let $M=A_{6}$ and $N=\operatorname{PSL}(2,7)$. Their orders are 360 and 168, with least common multiple 2520 . There is a unique simple group of order 2520 , namely A_{7}, which embeds both M and N; so A_{7} is the unique minimum $\{M, N\}$-cover.

Can a pair of simple groups have more than one minimum cover?

Can a pair of simple groups have more than one minimum cover?
There are two possibilities: Either two simple groups of the same order are minimum covers, or $\{M, N\}$ has minimum covers L and $M \times N$.

Can a pair of simple groups have more than one minimum cover?
There are two possibilities: Either two simple groups of the same order are minimum covers, or $\{M, N\}$ has minimum covers L and $M \times N$.
In the former case, we know that a pair of simple groups of the same order must be either $\left\{A_{8}, \operatorname{PSL}(3,4)\right\}$, or $\{\operatorname{PSp}(2 m, q), \mathrm{P} \Omega(2 m+1, q)\}$ with $m \geq 3$ and q odd.

Can a pair of simple groups have more than one minimum cover?
There are two possibilities: Either two simple groups of the same order are minimum covers, or $\{M, N\}$ has minimum covers L and $M \times N$.
In the former case, we know that a pair of simple groups of the same order must be either $\left\{A_{8}, \operatorname{PSL}(3,4)\right\}$, or $\{\operatorname{PSp}(2 m, q), \operatorname{P} \Omega(2 m+1, q)\}$ with $m \geq 3$ and q odd.
In the latter case, there are infinitely many triples of simple groups $\{L, M, N\}$ with $|L|=|M| \cdot|N|$. (The smallest is $\left.\left\{A_{6}, \operatorname{PSL}(2,8), A_{9}\right\}.\right)$ Can we determine all such triples? And can both L and $M \times N$ be minimum covers of the same pair of simple groups?

Radicals and residuals

The answer to our earlier question is "Yes" for classes of groups not having normal subgroups of certain types, or quotients of certain types.

Radicals and residuals

The answer to our earlier question is "Yes" for classes of groups not having normal subgroups of certain types, or quotients of certain types.
Theorem
Suppose that \mathcal{X} is a subgroup-closed class of finite groups. Let \mathcal{F} be a finite set of finite groups, none of which has a non-trivial \mathcal{X}-group as a quotient, and let G be a minimal \mathcal{F}-cover. Then G has no non-trivial \mathcal{X}-group as a quotient.

Radicals and residuals

The answer to our earlier question is "Yes" for classes of groups not having normal subgroups of certain types, or quotients of certain types.
Theorem
Suppose that \mathcal{X} is a subgroup-closed class of finite groups. Let \mathcal{F} be a finite set of finite groups, none of which has a non-trivial \mathcal{X}-group as a quotient, and let G be a minimal \mathcal{F}-cover. Then G has no non-trivial \mathcal{X}-group as a quotient.

Proof.
Suppose that $G / N \in \mathcal{X}$. Then for any group $H \in \mathcal{F}$, $H / H \cap N \cong H N / N \leq G / N \in \mathcal{X}$. So $H / H \cap N \in \mathcal{X}$ which implies $H \subseteq N$. By minimality of G, we have $N=G$.

Applications

- Let \mathcal{X} be the class of finite abelian groups. The condition that G has no non-trivial homomorphism to an \mathcal{X}-group means that G is perfect. So we deduce that, if every group in \mathcal{F} is perfect, then any minimal \mathcal{F}-cover is perfect.

Applications

- Let \mathcal{X} be the class of finite abelian groups. The condition that G has no non-trivial homomorphism to an \mathcal{X}-group means that G is perfect. So we deduce that, if every group in \mathcal{F} is perfect, then any minimal \mathcal{F}-cover is perfect.
- Let \mathcal{X} be the class of finite soluble groups. The condition that G has no non-trivial homomorphism to an \mathcal{X}-group means that G is equal to its soluble residual. So, if every group in \mathcal{F} is equal to its soluble residual, then the same is true of any minimal \mathcal{F}-cover.

A dual result

Let us call an \mathcal{F}-cover G co-minimal if no quotient of G is an \mathcal{F}-cover. Note that a minimum cover is both minimal and co-minimal.

A dual result

Let us call an \mathcal{F}-cover G co-minimal if no quotient of G is an \mathcal{F}-cover. Note that a minimum cover is both minimal and co-minimal.

Theorem

Suppose that \mathcal{X} is a subgroup-closed class of finite groups. Let \mathcal{F} be a finite set of finite groups, and suppose that no group in \mathcal{F} has a non-trivial normal \mathcal{X}-subgroup. Let G be a co-minimal cover of \mathcal{F}. Then G has no non-trivial normal \mathcal{X}-subgroup.

A dual result

Let us call an \mathcal{F}-cover G co-minimal if no quotient of G is an \mathcal{F}-cover. Note that a minimum cover is both minimal and co-minimal.

Theorem

Suppose that \mathcal{X} is a subgroup-closed class of finite groups. Let \mathcal{F} be a finite set of finite groups, and suppose that no group in \mathcal{F} has a non-trivial normal \mathcal{X}-subgroup. Let G be a co-minimal cover of \mathcal{F}.
Then G has no non-trivial normal \mathcal{X}-subgroup.
Applications:

- If no group in \mathcal{F} has a non-trivial abelian normal subgroup, then a co-minimal cover has no non-trivial abelian normal subgroup.

A dual result

Let us call an \mathcal{F}-cover G co-minimal if no quotient of G is an \mathcal{F}-cover. Note that a minimum cover is both minimal and co-minimal.

Theorem

Suppose that \mathcal{X} is a subgroup-closed class of finite groups. Let \mathcal{F} be a finite set of finite groups, and suppose that no group in \mathcal{F} has a non-trivial normal \mathcal{X}-subgroup. Let G be a co-minimal cover of \mathcal{F}.
Then G has no non-trivial normal \mathcal{X}-subgroup.
Applications:

- If no group in \mathcal{F} has a non-trivial abelian normal subgroup, then a co-minimal cover has no non-trivial abelian normal subgroup.
- Similarly with "soluble" replacing "abelian".

A dual problem

We can dualise the entire set-up. Given a finite set \mathcal{F} of finite groups, say that G is a dual cover for \mathcal{F} if every group in \mathcal{F} is a homomorphic image of G.

A dual problem

We can dualise the entire set-up. Given a finite set \mathcal{F} of finite groups, say that G is a dual cover for \mathcal{F} if every group in \mathcal{F} is a homomorphic image of G.
Dualising the earlier concepts, we say that a dual cover G is minimal if no proper homomorphic image of G is a dual cover, and minimum if no dual cover is smaller than G.

A dual problem

We can dualise the entire set-up. Given a finite set \mathcal{F} of finite groups, say that G is a dual cover for \mathcal{F} if every group in \mathcal{F} is a homomorphic image of G.
Dualising the earlier concepts, we say that a dual cover G is minimal if no proper homomorphic image of G is a dual cover, and minimum if no dual cover is smaller than G. Because of duality for abelian groups, the results for these groups are the same as those for covers described earlier.

A dual problem

We can dualise the entire set-up. Given a finite set \mathcal{F} of finite groups, say that G is a dual cover for \mathcal{F} if every group in \mathcal{F} is a homomorphic image of G.
Dualising the earlier concepts, we say that a dual cover G is minimal if no proper homomorphic image of G is a dual cover, and minimum if no dual cover is smaller than G. Because of duality for abelian groups, the results for these groups are the same as those for covers described earlier. But for non-abelian groups, essentially nothing is known.

Some problems

Question

Is it true that a finite set of finite abelian groups has a minimum cover which is abelian?

Some problems

Question

Is it true that a finite set of finite abelian groups has a minimum cover which is abelian?

Question
What is the order of magnitude of the function F such that a minimum p^{m}-cover has order $p^{F(m)}$? Is it polynomial, or exponential?

Some problems

Question

Is it true that a finite set of finite abelian groups has a minimum cover which is abelian?

Question
What is the order of magnitude of the function F such that a minimum p^{m}-cover has order $p^{F(m)}$? Is it polynomial, or exponential?

Question
Develop the theory of dual covers.

Some problems

Question

Is it true that a finite set of finite abelian groups has a minimum cover which is abelian?

Question
What is the order of magnitude of the function F such that a minimum p^{m}-cover has order $p^{F(m)}$? Is it polynomial, or exponential?

Question
Develop the theory of dual covers.
Question
What happens for semigroups?

... for your attention.

