
Covers of sets of groups

Peter J. Cameron, University of St Andrews

Algebra and Combinatorics Seminar
18 January 2024



Cauchy’s theorem for the prime 6

Cauchy’s theorem says that, if a prime p divides the order of a
finite group G, then G contains a subgroup isomorphic to Cp
(the cyclic group of order p).

One of our new results is the following:

Theorem
If 6 divides the order of a finite group G, then G contains a subgroup
isomorphic to C6, D6 (the dihedral group of order 6), or A4 (the
alternating group of degree 4).
More about this later . . .
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History

There are still elementary questions about finite groups which
have not yet been explored.

This research began on 16 October 2023, when Hamid Reza
Dorbidi (Jiroft) sent me a preliminary manuscript. We worked
on it, and put a paper on the arXiv the following month
(2311.16562).
David Craven (Birmingham) and Benjamin Sambale
(Heidelberg) saw it on the arXiv and contributed a number of
improvements, so we invited them to join the team.
We are about to submit a revised version to the arXiv.
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The problem

There has been a great deal of interest among finite group
theorists in describing the subgroups of a given group, in
particular the maximal subgroups. Colva’s book (with John
Bray and Derek Holt) is an important example.

Dorbidi’s question was a kind of “inverse problem”. Given a
finite set F of finite groups, call a group G a cover of F if every
group in F can be embedded in G. What can we say about
covers?
In particular, let us call an F -cover G cover minimal if no
proper subgroup of G is an F -cover, and minimum if no group
of smaller order is an F -cover. We are particularly interested in
minimal and minimum F -covers.
For any set F , there is a minimal F -cover: take the direct
product of the groups in F (this is a cover), and take a
subgroup minimal with respect to embedding all the groups
in F .
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Some guiding questions

Given a finite set F of finite groups:

I How large is a minimum F -cover?
I If all the groups in F have some property P , is there at

least one minimum F -cover which has property P?
I Clearly F has only finitely many minimum covers. Can it

have infinitely many minimal covers?
I Given a positive integer n, what is the size of a minimum
F (n)-cover, where F (n) consists of all the groups of order
n? (I will say simply an n-cover.)

I will say something about each of these questions.
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Preliminary results

Cayley’s Theorem tells us that

Theorem
The symmetric group Sn is an n-cover.

Also Sylow’s theorem tells us that

Theorem
Let N = pa1

1 · · · p
ar
r , where p1, . . . , pr are distinct primes. Then, for

each i, the Sylow pi-subgroup of Sn is a pai
i -cover.

In particular, if n = pm with p prime, then the Sylow
p-subgroup of Sn is a pm-cover, of order p(p

m−1)/(p−1).
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Prime power order

This upper bound for the order of a pm-cover is doubly
exponential in m. By contrast, we have:

Theorem
The order of a minimum pm-cover (for p prime) is at least
p(2/27+o(1))m2

.
The proof uses the result of Higman and Sims for the number
of groups of order pm; a p-group embedding them all must be
fairly large.

Question
Is the order of a minimum pm-cover of the form pf (m) where f is
polynomial?
We know that the values for pm = 23, 24, p3 (p an odd prime) are
respectively 25, 28, and p6 respectively.
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Two primes

Let q and r be distinct primes. Does {Cq, Cr} have finitely or
infinitely many minimal covers?

For {q, r} = {2, 3}, we show that the only minimal covers are
C6, D6 and A4. This is the theorem with which I began. Sketch
proof shortly.
If q and r are odd and at least one is greater than 5, then there
are infinitely many minimal covers.
For, by Dirichlet’s Theorem, there are infinitely many primes p
congruent to 1 (mod q) and to −1 (mod r). Then G = PSL(2, p)
is a {Cq, Cr}-cover. If r > 5, then the only maximal subgroup of
G containing Cr is Dp+1, which does not contain Cq. The
argument is similar in the other case.
Remaining pairs of primes have not yet been settled, but we
hope to have a result shortly.
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Sketch proof

Let G be a minimal {Cq, Cr}-cover.

I If G is soluble, then it is one of three possibilities: Cqr, an
elementary abelian q-group with Cr acting irreducibly on
it, or an elementary abelian r-group with Cq acting
irreducibly on it.

I Otherwise, G has a unique maximal normal subgroup N,
and G/N is a minimal {Cq, Cr}-cover.

I Now take {q, r} = {2, 3}.
In 1977 (pre-CFSG), Podufalov showed that a simple group
with no element of order 6 must be PSL(2, q), PSL(3, q),
PSU(3, q) or Sz(q) for some prime power q.

I Suzuki groups can’t occur since their orders are not
divisible by 3. The others all involve PSL(2, p), where q is a
power of p.

I PSL(2, 3) ∼= A4, while for other p they have D6 as a
subgroup.



Sketch proof

Let G be a minimal {Cq, Cr}-cover.
I If G is soluble, then it is one of three possibilities: Cqr, an

elementary abelian q-group with Cr acting irreducibly on
it, or an elementary abelian r-group with Cq acting
irreducibly on it.

I Otherwise, G has a unique maximal normal subgroup N,
and G/N is a minimal {Cq, Cr}-cover.

I Now take {q, r} = {2, 3}.
In 1977 (pre-CFSG), Podufalov showed that a simple group
with no element of order 6 must be PSL(2, q), PSL(3, q),
PSU(3, q) or Sz(q) for some prime power q.

I Suzuki groups can’t occur since their orders are not
divisible by 3. The others all involve PSL(2, p), where q is a
power of p.

I PSL(2, 3) ∼= A4, while for other p they have D6 as a
subgroup.



Sketch proof

Let G be a minimal {Cq, Cr}-cover.
I If G is soluble, then it is one of three possibilities: Cqr, an

elementary abelian q-group with Cr acting irreducibly on
it, or an elementary abelian r-group with Cq acting
irreducibly on it.

I Otherwise, G has a unique maximal normal subgroup N,
and G/N is a minimal {Cq, Cr}-cover.

I Now take {q, r} = {2, 3}.
In 1977 (pre-CFSG), Podufalov showed that a simple group
with no element of order 6 must be PSL(2, q), PSL(3, q),
PSU(3, q) or Sz(q) for some prime power q.

I Suzuki groups can’t occur since their orders are not
divisible by 3. The others all involve PSL(2, p), where q is a
power of p.

I PSL(2, 3) ∼= A4, while for other p they have D6 as a
subgroup.



Sketch proof

Let G be a minimal {Cq, Cr}-cover.
I If G is soluble, then it is one of three possibilities: Cqr, an

elementary abelian q-group with Cr acting irreducibly on
it, or an elementary abelian r-group with Cq acting
irreducibly on it.

I Otherwise, G has a unique maximal normal subgroup N,
and G/N is a minimal {Cq, Cr}-cover.

I Now take {q, r} = {2, 3}.
In 1977 (pre-CFSG), Podufalov showed that a simple group
with no element of order 6 must be PSL(2, q), PSL(3, q),
PSU(3, q) or Sz(q) for some prime power q.

I Suzuki groups can’t occur since their orders are not
divisible by 3. The others all involve PSL(2, p), where q is a
power of p.

I PSL(2, 3) ∼= A4, while for other p they have D6 as a
subgroup.



Sketch proof

Let G be a minimal {Cq, Cr}-cover.
I If G is soluble, then it is one of three possibilities: Cqr, an

elementary abelian q-group with Cr acting irreducibly on
it, or an elementary abelian r-group with Cq acting
irreducibly on it.

I Otherwise, G has a unique maximal normal subgroup N,
and G/N is a minimal {Cq, Cr}-cover.

I Now take {q, r} = {2, 3}.
In 1977 (pre-CFSG), Podufalov showed that a simple group
with no element of order 6 must be PSL(2, q), PSL(3, q),
PSU(3, q) or Sz(q) for some prime power q.

I Suzuki groups can’t occur since their orders are not
divisible by 3. The others all involve PSL(2, p), where q is a
power of p.

I PSL(2, 3) ∼= A4, while for other p they have D6 as a
subgroup.



Sketch proof

Let G be a minimal {Cq, Cr}-cover.
I If G is soluble, then it is one of three possibilities: Cqr, an

elementary abelian q-group with Cr acting irreducibly on
it, or an elementary abelian r-group with Cq acting
irreducibly on it.

I Otherwise, G has a unique maximal normal subgroup N,
and G/N is a minimal {Cq, Cr}-cover.

I Now take {q, r} = {2, 3}.
In 1977 (pre-CFSG), Podufalov showed that a simple group
with no element of order 6 must be PSL(2, q), PSL(3, q),
PSU(3, q) or Sz(q) for some prime power q.

I Suzuki groups can’t occur since their orders are not
divisible by 3. The others all involve PSL(2, p), where q is a
power of p.

I PSL(2, 3) ∼= A4, while for other p they have D6 as a
subgroup.



Minimal pm-covers

It is not too hard to show that any minimal 22-cover has order
23 (and indeed, there are just two, namely C4 × C2 and D8), so
that they are minimum covers.

However, we have:

Theorem
There are infinitely many minimal 23-covers. Indeed, for any m ≥ 4,
the group SD2m × C2 is a minimal 23-cover.
Here SD2m is the semi-dihedral group

〈a, b : a2m−1
= b2 = 1, b−1ab = a2m−2−1〉.
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Nilpotent groups

Theorem
Let F be a set of finite nilpotent groups. Then there is a minimum
F -cover which is nilpotent.

To see this, just take the direct product of Fp-covers, where Fp
is the set of Sylow p-subgroups of the groups in F for all
relevant primes.
Of course we cannot say that all minimum F -covers are
nilpotent. For example, if F = {(C2)2, C3, C5}, then a minimum
F -cover has order 60, and any group of order 60 having these
as its Sylow subgroups is an F -cover, including the simple
group A5.
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Abelian groups

For abelian groups, the position is very different. We can work
out the order of the smallest abelian cover of any set of finite
abelian groups; but we cannot prove that at least one minimum
cover must be abelian!

Arguing as in the last theorem, it suffices to find the smallest
cover of a set F of abelian p-groups, where p is prime.
Any such group has a canonical form

G = Cpa1 × · · · × Cpar

where a1 ≥ · · · ≥ ar. Now given a set of finite abelian p-groups,
we can write them all in canonical form and assume that the
value of r is the same for each (by adding trivial factors if
necessary). Then the smallest abelian cover has canonical form
whose ith factor is the largest group occurring as the ith factor
of one of the groups in F .
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As a corollary, we can show the following.

Define a function f on the natural numbers by

f (n) =
n

∑
k=1

⌊n
k

⌋
.

This function was considered by Dirichlet, who showed that
f (n) = n(log n + 2γ− 1) + O(

√
n), where γ is the

Euler–Mascheroni constant. It is given as sequence A006218 in
the On-Line Encyclopedia of Integer Sequences, where a
number of occurrences of it are noted. But the one given here
seems to be new.

Theorem
The smallest order of an abelian group containing every abelian group
of order pn is pf (n).
This is proved by applying the preceding theorem, first
computing that the largest size of the kth component in the
canonical form of an abelian group of order pn is pbn/kc.
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Questions and answers

Let P be a property of finite groups. If F is a finite set of finite
groups, does there exist a minimum F -cover with property P?

I Cyclic: Yes (the cyclic group whose order is the least
common multiple of the groups in F does the job).

I Abelian: Don’t know.
I Nilpotent: Yes (we saw this earlier).
I Soluble: No (proof coming up).
I Simple: See later.

For soluble groups, take F = {D10, A4}. The least common
multiple of their orders is 60, and it is an easy exercise to show
that the only group of order 60 containing both is A5.
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Simple groups

Theorem
Let M and N be simple groups. Then a minimum cover of {M, N} is
either simple or M×N.

Both cases occur:
Example Let M = A5 and N = PSL(2, 8). The orders of these
groups are 60 and 504. Their least common multiple is 2520 and
their product is 30240. The only simple groups with order
divisible by 2520 and not greater than 30240 are A7, A8 and
PSL(3, 4); none of these embed PSL(2, 8). By the theorem, the
unique minimum {M, N}-cover is M×N.
Example Let M = A6 and N = PSL(2, 7). Their orders are 360
and 168, with least common multiple 2520. There is a unique
simple group of order 2520, namely A7, which embeds both M
and N; so A7 is the unique minimum {M, N}-cover.
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Can a pair of simple groups have more than one minimum
cover?

There are two possibilities: Either two simple groups of the
same order are minimum covers, or {M, N} has minimum
covers L and M×N.
In the former case, we know that a pair of simple groups of the
same order must be either {A8, PSL(3, 4)}, or
{PSp(2m, q), PΩ(2m + 1, q)} with m ≥ 3 and q odd.
In the latter case, there are infinitely many triples of simple
groups {L, M, N} with |L| = |M| · |N|. (The smallest is
{A6, PSL(2, 8), A9}.) Can we determine all such triples? And
can both L and M×N be minimum covers of the same pair of
simple groups?
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Radicals and residuals

The answer to our earlier question is ”Yes” for classes of groups
not having normal subgroups of certain types, or quotients of
certain types.

Theorem
Suppose that X is a subgroup-closed class of finite groups. Let F be a
finite set of finite groups, none of which has a non-trivial X -group as
a quotient, and let G be a minimal F -cover. Then G has no
non-trivial X -group as a quotient.

Proof.
Suppose that G/N ∈ X . Then for any group H ∈ F ,
H/H ∩N ∼= HN/N ≤ G/N ∈ X . So H/H ∩N ∈ X which
implies H ⊆ N. By minimality of G, we have N = G.



Radicals and residuals

The answer to our earlier question is ”Yes” for classes of groups
not having normal subgroups of certain types, or quotients of
certain types.

Theorem
Suppose that X is a subgroup-closed class of finite groups. Let F be a
finite set of finite groups, none of which has a non-trivial X -group as
a quotient, and let G be a minimal F -cover. Then G has no
non-trivial X -group as a quotient.

Proof.
Suppose that G/N ∈ X . Then for any group H ∈ F ,
H/H ∩N ∼= HN/N ≤ G/N ∈ X . So H/H ∩N ∈ X which
implies H ⊆ N. By minimality of G, we have N = G.



Radicals and residuals

The answer to our earlier question is ”Yes” for classes of groups
not having normal subgroups of certain types, or quotients of
certain types.

Theorem
Suppose that X is a subgroup-closed class of finite groups. Let F be a
finite set of finite groups, none of which has a non-trivial X -group as
a quotient, and let G be a minimal F -cover. Then G has no
non-trivial X -group as a quotient.

Proof.
Suppose that G/N ∈ X . Then for any group H ∈ F ,
H/H ∩N ∼= HN/N ≤ G/N ∈ X . So H/H ∩N ∈ X which
implies H ⊆ N. By minimality of G, we have N = G.



Applications

I Let X be the class of finite abelian groups. The condition
that G has no non-trivial homomorphism to an X -group
means that G is perfect. So we deduce that, if every group
in F is perfect, then any minimal F -cover is perfect.

I Let X be the class of finite soluble groups. The condition
that G has no non-trivial homomorphism to an X -group
means that G is equal to its soluble residual. So, if every
group in F is equal to its soluble residual, then the same is
true of any minimal F -cover.
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A dual result

Let us call an F -cover G co-minimal if no quotient of G is an
F -cover. Note that a minimum cover is both minimal and
co-minimal.

Theorem
Suppose that X is a subgroup-closed class of finite groups. Let F be a
finite set of finite groups, and suppose that no group in F has a
non-trivial normal X -subgroup. Let G be a co-minimal cover of F .
Then G has no non-trivial normal X -subgroup.
Applications:
I If no group in F has a non-trivial abelian normal

subgroup, then a co-minimal cover has no non-trivial
abelian normal subgroup.

I Similarly with “soluble” replacing “abelian”.
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A dual problem

We can dualise the entire set-up. Given a finite set F of finite
groups, say that G is a dual cover for F if every group in F is a
homomorphic image of G.

Dualising the earlier concepts, we say that a dual cover G is
minimal if no proper homomorphic image of G is a dual cover,
and minimum if no dual cover is smaller than G.
Because of duality for abelian groups, the results for these
groups are the same as those for covers described earlier.
But for non-abelian groups, essentially nothing is known.
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Some problems

Question
Is it true that a finite set of finite abelian groups has a minimum cover
which is abelian?

Question
What is the order of magnitude of the function F such that a
minimum pm-cover has order pF(m)? Is it polynomial, or exponential?

Question
Develop the theory of dual covers.

Question
What happens for semigroups?



Some problems

Question
Is it true that a finite set of finite abelian groups has a minimum cover
which is abelian?

Question
What is the order of magnitude of the function F such that a
minimum pm-cover has order pF(m)? Is it polynomial, or exponential?

Question
Develop the theory of dual covers.

Question
What happens for semigroups?



Some problems

Question
Is it true that a finite set of finite abelian groups has a minimum cover
which is abelian?

Question
What is the order of magnitude of the function F such that a
minimum pm-cover has order pF(m)? Is it polynomial, or exponential?

Question
Develop the theory of dual covers.

Question
What happens for semigroups?



Some problems

Question
Is it true that a finite set of finite abelian groups has a minimum cover
which is abelian?

Question
What is the order of magnitude of the function F such that a
minimum pm-cover has order pF(m)? Is it polynomial, or exponential?

Question
Develop the theory of dual covers.

Question
What happens for semigroups?



. . . for your attention.


