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Happy 30th, Dugald in Leeds!

Before moving to Leeds, Dugald was my student in Oxford, my
host during a short visit to Simon Fraser (he took me up the
Squamish Chief, where I got frostbite, since I had just come
from a heatwave in southern California), and colleague at
Queen Mary University of London.

I have always said that I reckon I’ve learned more from my
students than they have from me.
Dugald is the best example of that. While he was a student, he
produced some fiendishly clever arguments, and the only way
I could understand them was to find my own proofs of some of
his results.
This talk contains an example of the same process at work.
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Topology in permutation groups

Some time in the 1980s, Helmut Wielandt gave a talk at
Oberwolfach with this title, asking the question “What does it
tell us about a permutation group if it is a group of
homeomorphisms of a non-trivial topology?” (Here and below,
“trivial” means “invariant under the symmetric group”.)

His answer was “Not much”. This was perhaps a bit
pessimistic, and this lecture is also meant to throw a more
positive light on Wielandt’s question.
To be clear, this does not refer to topology of permutation
groups. Any permutation group carries a natural topology, that
of pointwise convergence, which is very important in the
theory of permutation groups and related parts of model
theory.
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Strong primitivity

Helmut Wielandt observed that the usual notion of primitivity
is not strong enough to extend some results about finite
permutation groups to the infinite.

For example, suppose that G is a primitive permutation group
on the finite set Ω, and ∆ a non-empty proper subset of Ω.
Then for any x, y ∈ Ω, there exists g ∈ G such that xg ∈ ∆ but
yg /∈ ∆. But if Ω = Q, G is the group of order-preserving
permutations of Q, ∆ the set of positive rationals, and x > y,
then G is primitive but no such g exists.
To rectify this, the permutation group G is said to be strongly
primitive if there is no non-trivial partial preorder (reflexive
and transitive relation) preserved by G. Then the above result
holds for strongly primitive groups. (I will usually omit the
word “partial”.)
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Preorders and topologies

Thus, just as an imprimitive group preserves a nontrivial
partition of Ω, a group which is not strongly primitive
preserves a nontrivial partial preorder.

Now there is a connection between topologies and preorders.
Given a topology T , define a preorder → by x → y if and only
if every open set containing x contains y. In the other direction,
given a preorder →, define a topology where the sets
Ux = {y : x → y} form a base.
The map preorder → topology → preorder is always the
identity, but topology → preorder → topology gives a stronger
topology. We say that a topology is relational if it is fixed by
this map.
Thus, for example, every finite topology is relational.
Fraı̈ssé’s Theorem guarantees the existence of a countable
homogeneous preorder.
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Primitivity and topology

Theorem
Let G be a transitive permutation group on Ω.

▶ G is primitive if and only if every non-trivial G-invariant
topology is T0.

▶ G is strongly primitive if and only if every non-trivial
G-invariant topology is T1.

A couple of remarks:
▶ G preserves a non-T0 (resp. non-T1) topology if and only if

it preserves a relational topology with the same property.
▶ The topology derived from the universal homogeneous

preorder (resp. partial order) is non-T0 (resp. non-T1).

Question
What about higher separation axioms?
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Filters

A filter F on Ω is a family of sets which is closed upwards and
closed under pairwise intersection. Thus, a filter containing
two disjoint sets is the power set of Ω. A filter is non-trivial if
this is not the case.

An ultrafilter is a maximal non-trivial filter. A filter is principal
if it consists of all sets containing a fixed set F. Thus a principal
ultrafilter consists of all sets containing a fixed point x ∈ Ω.

Proposition

A non-principal ultrafilter contains the filter of all cofinite sets.
Zorn’s Lemma guarantees that non-principal ultrafilters exist;
their automorphism groups are maximal subgroups of the
symmetric group.
Note that, if F is a filter, then F ∪ {∅} is a topology, and is
non-trivial if F is.
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Maximal subgroups

One of the most important things we want to know about a
finite group is its list of subgroups. For finite symmetric
groups, this has been a very active area of research, centred
round the O’Nan–Scott Theorem.

Infinite groups are more problematic, since they may have
subgroups not contained in maximal subgroups. For example,
the symmetric group of countable degree is uncountable; any
countable subgroup is contained in a larger countable
subgroup, so cannot be maximal.
In 1990, Dugald Macpherson and Cheryl Praeger proved:

Theorem
A permutation group of countable degree which is not highly
transitive is contained in a maximal subgroup of Sym(Ω).
(Highly transitive means transitive on n-tuples of distinct
points for all n.)
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The proof

The proof involves three steps. Let G be a group on a countable
set Ω which is not highly transitive.

▶ G preserves a topology on Ω.
▶ G preserves a filter on Ω.
▶ G is contained in a maximal subgroup of Sym(Ω).

The argument in their paper actually uses ideals rather than
filters (an ideal is a family of sets closed downwards and under
pairwise union, so the complements of the sets in a filter form
an ideal and vice versa).
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Topologies and filters

Note that, if F is a filter, then F ∪ {∅} is a topology. The other
direction is less trivial; Macpherson and Praeger use substantial
machinery from model theory (the theorems of
Ehrenfeucht–Mostowski, Engeler–Ryll-Nardzewski–Svenonius,
and Cherlin–Harrington–Lachlan).

Here is a more direct argument, producing the filter directly
from the topology. Only two constructions of filters are
required.

Theorem
A primitive group on a countable set which preserves a non-trivial
topology preserves a non-trivial filter.
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A preliminary result

A moiety in a countable set is an infinite and co-infinite subset.

Proposition

Let G be a primitive permutation group on the countable set Ω.
(a) G preserves a non-trivial topology if and only if there is a moeity

∆ such that the intersection of any finite number of images of ∆
under G is empty or infinite.

(b) G preserves a non-trivial filter if and only if there is a moeity ∆
such that the intersection of any finite number of images of ∆
under G is infinite.
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Proof

For (a), show using primitivity that if there is a finite
non-empty open set then the topology is discrete, so trivial;
otherwise a non-cofinite open set ∆ satisfies the condition.

Conversely, if ∆ satisfies the condition, then the non-empty
intersections of finitely many translates of ∆ form a basis for a
topology.
For (b), we use Neumann’s lemma: if G has no finite orbits on
Ω and A, B are finite sets, then there exists g ∈ G such that
Ag ∩ B = ∅. So a non-trivial filter admitting a transitive group
contains no finite sets, and any set of the filter has the required
property.
Conversely, if ∆ satisfies the condition, then the sets containing
intersections of finitely many translates of ∆ is a filter.
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Each of the following is a filter:

▶ the sets containing finite intersections of dense open sets;
▶ the complements of finite unions of discrete sets.

So each of these families must be trivial: thus, every dense open
set is cofinite, and every discrete set is finite.
Form a graph on Ω by joining x and y whenever there exist
disjoint open sets containing these points.
If the graph has no infinite clique, then show that it is complete
multipartite, contradicting primitivity unless it is null, in which
case any two non-empty open sets intersect, and the sets
containing non-empty open sets form a non-trivial filter.
If the graph has an infinite clique C, then the induced topology
on C is Hausdorff, and so contains an infinite discrete set (an
exercise in Sierpiński’s book), a contradiction.
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The random graph

There is more to say about filters, but first a digression, to
introduce one of my favourite objects, the (Erdős–Rényi)
countable random graph (aka the Rado graph). This is the
graph obtained almost surely if edges on a countable vertex set
are chosen by tossing a coin for each pair of vertices.

(This fact constitutes a valid non-constructive existence proof.
Rado gave the first explicit construction of it.)
In case you were wondering, the coin does not have to be fair;
we can even allow it to slowly become more biased as the
construction proceeds.
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Some facts about the countable random graph:
▶ it is universal (contains all finite and countable graphs as

induced subgraphs) and homogeneous (any isomorphism
between finite induced subgraphs extends to an
automorphism);

▶ it is the Fraı̈ssé limit of the class of finite graphs;
▶ it is obtained by “undirecting” the membership relation in

any countable model of ZF;
▶ it is obtained by taking the vertices to be the primes

congruent to 1 mod 4, p and q joined if p is a quadratic
residue mod q;

▶ its first-order theory is the theory of almost all finite
graphs.

Rado’s construction is equivalent to taking the unique model of
hereditarily finite set theory and undirecting membership.
(Most of ZF is not necessary for the third point above; the
Axiom of Foundation is the crucial one.)
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▶ it is the Fraı̈ssé limit of the class of finite graphs;
▶ it is obtained by “undirecting” the membership relation in

any countable model of ZF;
▶ it is obtained by taking the vertices to be the primes

congruent to 1 mod 4, p and q joined if p is a quadratic
residue mod q;

▶ its first-order theory is the theory of almost all finite
graphs.

Rado’s construction is equivalent to taking the unique model of
hereditarily finite set theory and undirecting membership.
(Most of ZF is not necessary for the third point above; the
Axiom of Foundation is the crucial one.)



Some facts about the countable random graph:
▶ it is universal (contains all finite and countable graphs as

induced subgraphs) and homogeneous (any isomorphism
between finite induced subgraphs extends to an
automorphism);
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Generating filters

Given a family A of subsets of V, the filter generated by A is
the set

F = {X ⊆ V : (∃A1, . . . , An ∈ A)(A1 ∩ · · · ∩ An) ⊆ X}.

Two families A1 and A2 generate the same filter if and only if
each member in A2 lies in the filter generated by A1 (that is,
contains a finite intersection of sets of A1) and vice versa.
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Neighbourhood filters

Let Γ be a graph on a countable vertex set V. We define the
neighbourhood filter of Γ to be the filter generated by
{Γ(v) : v ∈ V}, where Γ(v) denotes the neighbourhood of v in
Γ, the set of vertices adjacent to v.

Proposition

Suppose that Γ has the property that each vertex has a non-neighbour.
Then the filter generated by the closed neighbourhoods
Γ(v) = Γ(v) ∪ {v} is equal to FΓ.

For we have Γ(v) ⊆ Γ(v), and, if w is not adjacent to v, then
Γ(v) ∩ Γ(w) ⊆ Γ(v).
The condition on Γ is necessary. If Γ is the complete graph, the
closed neighbourhoods generate the filter {V}, while the open
neighbourhoods generate the filter of cofinite subsets of V.
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Neighbourhood filter of the random graph

Let R denote the countable random graph.

Proposition

The following three conditions on a graph Γ are equivalent:
(a) FΓ is nontrivial;
(b) Γ contains R as a spanning subgraph;
(c) FΓ ⊆ FR.

A filter is trivial if and only if it contains the empty set. So FΓ is
non-trivial if and only if any finitely many neighbourhoods
have non-empty intersection. This is equivalent to the
statement that R is a spanning subgraph of Γ. So (a) and (b) are
equivalent.
If Γ contains R as a spanning subgraph, then R(v) ⊆ Γ(v) for all
v. So (b) implies (c). Conversely, FR is non-trivial (by our proof
that (b) implies (a)), so (c) implies (a).
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Remark
This result shows that FR is the unique maximal
neighbourhood filter. But this uniqueness is only up to
isomorphism. So part (c) really means that FΓ is contained in a
filter isomorphic to FR.

For example, let T be the random 3-colouring of the edges of
the complete graph, with colours red, green and blue. Let R1 be
the graph consisting of red edges, and R2 the graph consisting
of red and green edges, in T. Then both R1 and R2 are
isomorphic to R. Since R1(v) ⊆ R2(v), we have FR2 ⊆ FR1 . We
show that the inequality is strict.
The set R1(v) belongs to FR1 . Suppose that it belongs to FR2 .
Then there are vertices w1, . . . , wn such that

R2(w1) ∩ . . . ∩ R2(wn) ⊆ R1(v).

But, since the green graph is isomorphic to R, there is a vertex x
joined to all of v, w1, . . . , wn by green edges; then x belongs to
the left but not to the right, a contradiction.
Similarly there are countable chains of filters isomorphic to FR.
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Topologies

We get two topologies To, Tc on the vertex set of the random
graph by taking a sub-basis for the open sets to be the open,
resp. closed, vertex neighbourhoods; that is, the open sets are
all unions of finite intersections of open, resp. closed,
neighbourhoods.

Proposition

▶ The families of open and closed neighbourhoods in R are
isomorphic.

▶ The topologies To and Tc are homeomorphic.

To prove this, show that the Levi graphs of the two families of
sets are both isomorphic to the generic bipartite graph, arising
as the Fraı̈ssé limit of of the class of all finite graphs with
bipartition. (Bipartite graphs do not form a Fraı̈ssé class but if
we include a bipartition as part of the structure they do.)
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Properties

These topologies are not Hausdorff but do have the T1
separation property. (Given two distinct vertices, there is a
vertex joined to one but not the other.)

Indeed, the automorphism group of R is strongly primitive, in
Wielandt’s sense, so any Aut(R)-invariant topology must be T1.
The homeomorphism groups are highly transitive.
Not much else is known. There is a very rich collection of
highly transitive overgroups of the automorphism group of R,
and certainly much more remains to be discovered.
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