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Our subject

Combinatorialists think of a design as a collection of subsets,
but to a statistician it is more usually a partition (for example, a
partition of the experimental units according to the treatment
they will receive).

So we will be talking about partitions of the vertex set of a
graph.
For the concept we are discussing,
▶ some statisticians call it equivalent estimation;
▶ some other statisticians call it commutative orthogonal

block structure;
▶ some combinatorialists call it an equitable partition of the

graph.
Part of our message is that equitable partitions, a topic in
combinatorics, is of practical use in Design of Experiments.
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OBS and COBS

Four weeks ago, we told you about orthogonal block
structures. Each of these is a sublattice of the partition lattice on
a set Ω which consists of uniform partitions (all parts of the
same size) and where the partitions, regarded as equivalence
relations, commute.

But this has very little to do with commutative orthogonal
block structures. So this name is something of a misnomer for
what we discuss here, although it is fairly widely used in some
quarters.
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Strongly regular graphs

Let Ω be a finite set of experimental units
(for example, plots in a field).

In the experiments that RAB designs, there is always some kind
of combinatorial structure on Ω.
For this talk, the combinatorial structure is a graph Γ with
vertex-set Ω.
This graph is regular if there is some constant d such that every
vertex is contained in d edges.
The graph Γ is strongly regular if
▶ it is regular;
▶ if two vertices are joined by an edge, then they have

p common neighbours, for some constant p;
▶ if two vertices are not joined by an edge, then they have

q common neighbours, for some constant q;
▶ the graph is neither complete nor null.
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The Petersen graph

This is a famous strongly regular graph.
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It has 10 vertices, each having degree 3.
If two vertices are joined by an edge, then they have no
common neighbours.
If two vertices are not joined by an edge, then they have exactly
one common neighbour.
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Commutative linear algebra

Suppose that Γ is a strongly regular graph with vertex-set Ω.

Here are three Ω × Ω real matrices associated with Γ:
▶ the adjacency matrix A has Aα,β = 1 if {α, β} is an edge,

and all other entries zero;
▶ the identity matrix I;
▶ the all-1 matrix J.

Because the graph Γ is strongly regular,
A2 is a linear combination of A, I and J.
In this case, the real vector space RΩ is the orthogonal direct
sum of subspaces W0, W1 and W2, each of which is (contained
in) an eigenspace of A and an eigenspace of J, where W0 is the
one-dimensional subspace spanned by the all-1 vector u.
Let G be the automorphism group of Γ. If Γ has rank 3 then
G has precisely three orbits on Ω × Ω. These correspond to the
non-zero entries in the matrices I, A and J − I − A.
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A walk around Design of Experiments

A combinatorial structure on a finite set →

Commutative linear algebra over a finite-dimensional real
vector space.
How should we design an experiment with certain numbers
specified? →
Assumptions about some relevant random variables →
Eigenspaces, so back to linear algebra.

We will describe two different desirable statistical conditions
that translate easily into combinatorics and linear algebra.

We will illustrate each of these conditions when applied to the
same two combinatorial objects.

Bailey and Cameron Designs on strongly regular graphs UWGTC, 26/11/24 7/35



A walk around Design of Experiments

A combinatorial structure on a finite set →
Commutative linear algebra over a finite-dimensional real
vector space.

How should we design an experiment with certain numbers
specified? →
Assumptions about some relevant random variables →
Eigenspaces, so back to linear algebra.

We will describe two different desirable statistical conditions
that translate easily into combinatorics and linear algebra.

We will illustrate each of these conditions when applied to the
same two combinatorial objects.

Bailey and Cameron Designs on strongly regular graphs UWGTC, 26/11/24 7/35



A walk around Design of Experiments

A combinatorial structure on a finite set →
Commutative linear algebra over a finite-dimensional real
vector space.
How should we design an experiment with certain numbers
specified? →

Assumptions about some relevant random variables →
Eigenspaces, so back to linear algebra.

We will describe two different desirable statistical conditions
that translate easily into combinatorics and linear algebra.

We will illustrate each of these conditions when applied to the
same two combinatorial objects.

Bailey and Cameron Designs on strongly regular graphs UWGTC, 26/11/24 7/35



A walk around Design of Experiments

A combinatorial structure on a finite set →
Commutative linear algebra over a finite-dimensional real
vector space.
How should we design an experiment with certain numbers
specified? →
Assumptions about some relevant random variables →

Eigenspaces, so back to linear algebra.

We will describe two different desirable statistical conditions
that translate easily into combinatorics and linear algebra.

We will illustrate each of these conditions when applied to the
same two combinatorial objects.

Bailey and Cameron Designs on strongly regular graphs UWGTC, 26/11/24 7/35



A walk around Design of Experiments

A combinatorial structure on a finite set →
Commutative linear algebra over a finite-dimensional real
vector space.
How should we design an experiment with certain numbers
specified? →
Assumptions about some relevant random variables →
Eigenspaces, so back to linear algebra.

We will describe two different desirable statistical conditions
that translate easily into combinatorics and linear algebra.

We will illustrate each of these conditions when applied to the
same two combinatorial objects.

Bailey and Cameron Designs on strongly regular graphs UWGTC, 26/11/24 7/35



A walk around Design of Experiments

A combinatorial structure on a finite set →
Commutative linear algebra over a finite-dimensional real
vector space.
How should we design an experiment with certain numbers
specified? →
Assumptions about some relevant random variables →
Eigenspaces, so back to linear algebra.

We will describe two different desirable statistical conditions
that translate easily into combinatorics and linear algebra.

We will illustrate each of these conditions when applied to the
same two combinatorial objects.

Bailey and Cameron Designs on strongly regular graphs UWGTC, 26/11/24 7/35



A walk around Design of Experiments

A combinatorial structure on a finite set →
Commutative linear algebra over a finite-dimensional real
vector space.
How should we design an experiment with certain numbers
specified? →
Assumptions about some relevant random variables →
Eigenspaces, so back to linear algebra.

We will describe two different desirable statistical conditions
that translate easily into combinatorics and linear algebra.

We will illustrate each of these conditions when applied to the
same two combinatorial objects.

Bailey and Cameron Designs on strongly regular graphs UWGTC, 26/11/24 7/35



Design question and statistical issues

We have a set T of t treatments. We need to choose a design,
which is a function f : Ω → T allocating treatment f (ω) to
experimental unit ω. How should we choose f ?

For each ω in Ω, there is a random variable Yω, which we will
measure.
Assume that, for each treatment i, there is an unknown
constant τi such that E(Yω) = τi if f (ω) = i.
We randomize the design by applying a random permutation
from G. When Γ has rank 3 this lets us assume that

Cov(Yα, Yβ) =


σ2 if α = β

ρ1σ2 if α ̸= β and {α, β} is an edge of Γ
ρ2σ2 otherwise.

The eigenspaces of Cov(Y) are W0, W1 and W2.
Call the corresponding eigenvalues γ0, γ1 and γ2.
We do not know the values of γ0, γ1 and γ2 in advance.
When is the choice of best design not affected by the values of
γ0, γ1 and γ2?
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Two different desirable statistical conditions

Condition A We want the variance Vij of the estimator of τi − τj
to be the same for all pairs {i, j} of distinct
treatments.

Solution Allocate the treatments to the vertices of Γ in such
a way that, for all pairs {i, j} of distinct treatments,
there are λ edges with i at one end and j at the
other.

Condition B We want the linear combination of the Yω (for
ω ∈ Ω) which gives the best estimate of τi − τj
(correct on average, smallest variance) to be the
same as the best estimator when γ0 = γ1 = γ2.
This is the difference between the averages for
plots with treatment i and those with treatment j.

Solution The subspace VT of RΩ consisting of vectors
which are constant on each treatment can be
orthogonally decomposed as

W0 ⊕ (VT ∩ W1)⊕ (VT ∩ W2).
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Two conditions, two types of structure

We are going to discuss the Conditions A and B which we have
just defined in two families of strongly regular graphs with
rank 3:

▶ Combinatorial structure 1: Disjoint union of b complete
graphs each of size k.

▶ Combinatorial structure 2: Triangular graph T(m), the line
graph of the complete graph Km.

We are mainly interested in Condition B, but in each case we
describe designs satisfying Condition A for comparison.
Condition B is the one referred to as Commutative Orthogonal
Block Structure or COBS by some statisticians.
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Combinatorial Structure 1: Partition into Blocks

This is probably the best-known combinatorial structure in
Design of Experiments.
The set Ω is partitioned into b blocks, each of size k.
Thus Γ consists of b disjoint copies of the complete graph on
k vertices. This is strongly regular.

For Condition A, we want the variance Vij of the estimator of
τi − τj to be the same for all pairs {i, j} of distinct treatments. If
γ1 ̸= γ2 and k < t then the only way to achieve this is to use a
balanced incomplete-block design.
This means that each treatment occurs no more than once in
each block, and there is an integer λ such that, for all pairs {i, j}
of distinct treatments, there are λ blocks in which i and j both
occur.
If k = t then each block must contain every treatment.
If k > t then something slightly more complicated is needed.
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An example of a balanced incomplete-block design

Here is a balanced incomplete-block design with b = 14, k = 4,
t = 8 and λ = 3.

1 3 5 7 2 4 6 8

1 2 5 6 3 4 7 8

1 2 3 4 5 6 7 8

1 4 5 8 2 3 6 7

1 3 6 8 2 4 5 7

1 2 7 8 3 4 5 6

1 4 6 7 2 3 5 8
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Partition into Blocks: Condition B

The set Ω is partitioned into b blocks, each of size k.

Let VB be the b-dimensional subspace of RΩ consisting of
vectors which are constant on each block.
Then W0 = ⟨u⟩, W1 = VB ∩ W⊥

0 and W2 = V⊥
B .

Condition B We want the linear combination of the Yω (for
ω ∈ Ω) which gives the best estimate of τi − τj
(correct on average, smallest variance) to be the
same as the best estimator when γ0 = γ1 = γ2.
This is the difference between the averages for
plots with treatment i and those with treatment j.

Since the treatment subspace VT contains W0, there are three
possibilities.
(a) VT ≤ W0 ⊕ W2.
(b) VT ≤ W0 ⊕ W1.
(c) VT ∩ W1 and VT ∩ W2 are both non-zero, and

VT = W0 ⊕ (VT ∩ W1)⊕ (VT ∩ W2).
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Solution (a) for Condition B

(a) VT ≤ W0 ⊕ W2.

There are k treatments, and each occurs exactly once in
each block. This is called a complete-block design.
For example, when b = 4 and k = 3 we get

1 2 3 1 2 3 1 2 3 1 2 3

More generally, any subset of treatments may be merged
into a single treatment. For example,

1 2 2 1 2 2 1 2 2 1 2 2
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Solution (b) for Condition B

(b) VT ≤ W0 ⊕ W1.

There are t treatments, where t divides b. Each treatment is
applied to every plot in each of b/t whole blocks.
For example, when b = 4, k = 3 and t = 2 we get

A A A B B B A A A B B B

Such designs are used when management constraints
make it impractical to apply the treatments to the
individual plots.
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Solution (c) for Condition B

(c) VT ∩ W1 and VT ∩ W2 are both non-zero, and
VT = W0 ⊕ (VT ∩ W1)⊕ (VT ∩ W2).

We combine the two previous approaches.
The treatment set is T1 × T2,
where |T1| = t1, which divides b, and |T2| = k.
Each item from T2 is applied to one plot per block.
Each item from T1 is applied to b/t1 whole blocks.
For example, when b = 4, k = 3, t = 6 and t1 = 2 we get

A1 A2 A3 B1 B2 B3 A1 A2 A3 B1 B2 B3

These are called split-plot designs, and are widely used in
practice.
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Combinatorial Structure 2: Half-Diallel

Diallel experiments are traditionally used in plant breeding. In
a full diallel experiment, the experimental units are all ordered
crosses between m parental lines.

In situtations where the gender of the parent is irrelevant,
it is efficient to use half-diallel experiments, in which the
experimental units consist of all unordered crosses between
m parental lines, excluding self-crosses.
This structure is also useful in experiments where pairs of
individuals are required to complete some task, with both
individuals playing the same role.
This happens in some experiments in human-computer
interaction.
For example, the aim of the experiment might be to compare
different methods for researchers to collaborate when they are
unable to meet face-to-face, such as email, online meetings,
old-fashioned letters, telephone calls with and without video.
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Combinatorial Structure 2: more detail

Now the set Ω consists of all unordered pairs from the set
{1, 2, . . . , m} of m distinct individuals, where m ≥ 4.

These form the vertices of the graph Γ.
There is an edge between two distinct vertices if and only if
they have an individual in common.
Thus every vertex is joined to 2(m − 2) other vertices.
This is called the triangular graph T(m).
It is strongly regular, and its adjacency matrix A satisfies

A2 = (2m − 8)I + (m − 6)A + 4J.
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The Petersen graph again

This labelling of the vertices shows that it is the complement of
the triangular graph T(5).
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How to picture the vertices of T(m) in general

When m = 6 the set Ω has 15 elements, which can be shown as
the cells of a 6 × 6 square lying below the main diagonal.

1 2 3 4 5

2

3

◦ ◦

4

◦

5

◦ ◦ ∗ ◦

6

◦ ◦

∗ = {3, 5}

◦ = vertices joined to vertex {3, 5}
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Condition A on the Petersen graph
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For each treatment, there is one edge that has that treatment on
both vertices.
For each pair of distinct treatments, there is one edge that has
them on its endpoints.
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Triangular Graph: Condition B

The set Ω consists of all unordered pairs from {1, 2, . . . , m}.

For
i = 1, . . . , m, let vi be the vector taking the value 1 on each pair
that includes individual i and value 0 elsewhere. Let Vind be
the m-dimensional subspace of RΩ spanned by v1, . . . , vm.
Then W0 = ⟨u⟩, W1 = Vind ∩ W⊥

0 and W2 = V⊥
ind.

For Condition B, we want the linear combination of the Yω (for
ω ∈ Ω) which gives the best estimate of τi − τj (correct on
average, smallest variance) to be the same as the best estimator
when γ0 = γ1 = γ2.
This is the difference between the averages for plots with
treatment i and those with treatment j.
Since VT contains W0, there are three possibilities.
(a) VT ≤ W0 ⊕ W2.
(b) VT ≤ W0 ⊕ W1.
(c) VT ∩ W1 and VT ∩ W2 are both non-zero, and

VT = W0 ⊕ (VT ∩ W1)⊕ (VT ∩ W2).
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Solution (a) for Condition B

(a) VT ≤ W0 ⊕ W2.

For treatment A, let pAi be the number of pairs including
individual i on which A occurs. We were able to show that
if (a) holds then
▶ pAi = pAj = pA for all individuals i and j;
▶ treatment A occurs on mpA/2 pairs, and so mpA is even for

all treatments A;
▶ if pA = 1 then m is even and A occurs on m/2 pairs;
▶ if this is true for all treatments then t = m − 1.

In this case, we can do this by using a symmetric Latin
square of order m with a single letter on the main diagonal
and omitting the main diagonal and plots above the main
diagonal.
(Start with a symmetric idempotent Latin square; add an
extra row at the bottom; move every diagonal element
down to the bottom row; then put a dummy like ∞ on
every diagonal cell.)
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An example with m = 8

1 2 3 4 5 6 7

2 C
3 D E
4 E F G
5 F G A B
6 G A B C D
7 A B C D E F
8 B D F A C E G

Each treatment occurs exactly once with each individual.
Just as with complete-block designs, any subset of treatments
may be merged into a single treatment.

Bailey and Cameron Designs on strongly regular graphs UWGTC, 26/11/24 24/35



An example with m = 8

1 2 3 4 5 6 7

2 C
3 D E
4 E F G
5 F G A B
6 G A B C D
7 A B C D E F
8 B D F A C E G

Each treatment occurs exactly once with each individual.

Just as with complete-block designs, any subset of treatments
may be merged into a single treatment.

Bailey and Cameron Designs on strongly regular graphs UWGTC, 26/11/24 24/35



An example with m = 8

1 2 3 4 5 6 7

2 C
3 D E
4 E F G
5 F G A B
6 G A B C D
7 A B C D E F
8 B D F A C E G

Each treatment occurs exactly once with each individual.
Just as with complete-block designs, any subset of treatments
may be merged into a single treatment.

Bailey and Cameron Designs on strongly regular graphs UWGTC, 26/11/24 24/35



Solution (a) for Condition B when m is odd

When m is odd, pA must even for every treatment A.

If pA = 2 for every treatment A then m = 2t + 1.
Now label the treatments by {1, 2, . . . , t}.
The treatment applied to the pair {i, j} is whichever is smaller
of the differences i − j and j − i modulo m.
When m = 9 this gives

1 2 3 4 5 6 7 8

2 1
3 2 1
4 3 2 1
5 4 3 2 1
6 4 4 3 2 1
7 3 4 4 3 2 1
8 2 3 4 4 3 2 1
9 1 2 3 4 4 3 2 1
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Solution (a) for Condition B when m = 5
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Here A represents ±1 mod 5 and B represents ±2 mod 5.
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Solution (b) for Condition B

(b) VT ≤ W0 ⊕ W1.

There is essentially only one solution.
There are precisely two treatments, say A and B. There is
one special individual i. Treatment A is applied to all pairs
containing i, and treatment B is applied to all other pairs.
When m = 9 this gives

1 2 3 4 5 6 7 8

2 A
3 A B
4 A B B
5 A B B B
6 A B B B B
7 A B B B B B
8 A B B B B B B
9 A B B B B B B B
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Solution (b) for Condition B when m = 5
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The two treatments are not equally replicated.
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Solution (c) for Condition 2

(c) VT ∩ W1 and VT ∩ W2 are both non-zero, and
VT = W0 ⊕ (VT ∩ W1)⊕ (VT ∩ W2).

Here is a very general solution.
▶ Partition the set of individuals into n sorts S1, . . . , Sn of size

s1, . . . , sn, where n ≥ 2.
▶ If si > 1 then put a solution (a) design on pairs of

individuals of sort i, using ti treatments forming a set Ti.
▶ If si = 2 then Ti has a single treatment with replication 1, so

avoid this case.
▶ If si = 3 then the only way to avoid replication 1 is to have

ti = 1.
▶ If n = 2 and s1 = 1 then make sure that t2 > 1, to avoid

solution (b).
▶ If i < j then let tij be any common divisor of si and sj. Make

a set Tij of tij treatments. Allocate these to the cells in the
rectangle Sj × Si in such a way that all treatments appear
equally often in each row and equally often in each column.

▶ If i < j and si = sj = 1 then Tij has a single treatment with
replication 1, so avoid this case.
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Theorem about this solution

Theorem
For i = 1, . . . , n,
let wi be the vector whose entries are

0 on all pairs which do not involve an individual of sort i
1 on all pairs which involve a single individual of sort i
2 on all pairs which involve two indiviudals of sort i

Then
▶ The vectors w1, . . . , wn span an n-dimensional subspace of

VT ∩ (W0 ⊕ W1).
▶ If v ∈ VT is orthogonal to wi for i = 1, . . . , n then v ∈ W2.
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An example with two sorts

Here m = 9, n = 2, s1 = 3, s2 = 6 and t = 9.

1 2 3 4 5 6 7 8

2 A
3 A A
4 B C D
5 B C D E
6 D B C F I
7 D B C G H E
8 C D B H F G I
9 C D B I G H F E

S1 = {1, 2, 3}, T1 = {A} and t1 = 1.
S2 = {4, 5, 6, 7, 8, 9}, T2 = {E, F, G, H, I} and t2 = 5.
T12 = {B, C, D} and t12 = 3.
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An example with three sorts

Here m = 9, n = 3, s1 = 1, s2 = 4, s3 = 4 and t = 12.

1 2 3 4 5 6 7 8

2 A
3 A B
4 A C D
5 A D C B
6 E F G H I
7 E G H I F J
8 E H I F G K L
9 E I F G H L K J

S1 = {1}, T1 = ∅ and t1 = 0.
S2 = {2, 3, 4, 5}, T2 = {B, C, D} and t2 = 3.
S3 = {6, 7, 8, 9}, T3 = {J, K, L} and t3 = 3.
T12 = {A} and t12 = 1. T13 = {E} and t13 = 1.
T23 = {F, G, H, I} and t23 = 4.
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An example with three sorts

Here m = 9, n = 3, s1 = 1, s2 = 4, s3 = 4 and t = 12.

1 2 3 4 5 6 7 8

2 A
3 A B
4 A C D
5 A D C B
6 E F G H I
7 E G H I F J
8 E H I F G K L
9 E I F G H L K J

S1 = {1}, T1 = ∅ and t1 = 0.

S2 = {2, 3, 4, 5}, T2 = {B, C, D} and t2 = 3.
S3 = {6, 7, 8, 9}, T3 = {J, K, L} and t3 = 3.
T12 = {A} and t12 = 1. T13 = {E} and t13 = 1.
T23 = {F, G, H, I} and t23 = 4.

Bailey and Cameron Designs on strongly regular graphs UWGTC, 26/11/24 32/35



An example with three sorts

Here m = 9, n = 3, s1 = 1, s2 = 4, s3 = 4 and t = 12.
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Solution (c) for Condition 2 when m = 5
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Treatment A occurs on all pairs involving individual 1.
Each other treatment is involved with each other individual
exactly once.
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Equitable partitions

Now we turn to the combinatorics.

Let Γ be the graph, and Π a partition of its vertex set into t parts
P1, . . . , Pt.
We say that Π is equitable if there is a t × t matrix M = (mij) of
non-negative integers such that each vertex of Pi has exactly mij
neighbours in Pj.
In fact we have been discussing equitable partitions of strongly
regular graphs under another name!

Theorem
The treatment allocation to the vertices of a strongly regular graph Γ
given by the partition Π has the COBS property (our Condition B) if
and only if Π is equitable.
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Proof of the theorem

Let Ω be the vertex set of the graph. Let W0, W1, W2 be the
common eigenspaces of A(Γ), I and J.

For i = 1, . . . , t, let Vi be the subspace spanned by the vector
which is one on the vertices in part Pi and zero elsewhere, and
let V be the space spanned by V1, . . . , Vt.
The displayed equation near the top of p.144 in the paper by us
with Sasha Gavrilyuk and Sergey Goryainov (reference below)
shows that, if the partition is equitable, then

V = (V ∩ W0)⊕ (V ∩ W1)⊕ (V ∩ W2).

But this is equivalent to our Condition B, the definition of a
COBS.
The converse works in the same way.
▶ R. A. Bailey, Peter J. Cameron, Alexander L. Gavrilyuk and

Sergey V. Goryainov, Equitable partitions of Latin-square
graphs, J. Combinatorial Designs 27 (2019), 142-160; doi:
10.1002/jcd.21634
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