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How it began

In the summer of 2022, Marina had a research internship in the
department to work with Peter. Having finished before the
money ran out, we looked at a new property of finite
permutation groups which we called pre-primitivity. The idea
was that pre-primitivity and quasiprimitivity were
independent but together were equivalent to primitivity.

In the next academic year, Marina had a STARIS internship,
and we looked more generally at properties of transitive
imprimitive permutation groups, which led to the work we
describe here.
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Combinatorial considerations about permutation groups

This was the title of a lecture course by Donald Higman in
Oxford in 1969–1970. If G is a permutation group on Ω which is
primitive but not doubly transitive, then the orbital digraphs
(whose edge sets are non-diagonal orbits of G on Ω2) are
connected, and together they form what Higman called a
coherent configuration, whose adjacency matrices span an
associative algebra.

Similar ideas were being developed by Boris Weisfeiler for the
graph isomorphism problem, and by R. C. Bose and his
students for design and analysis of experiments.
Our aim was to do something similar for transitive but
imprimitive groups.
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What is a Latin square?

Definition
Let n be a positive integer.
A Latin square of order n is an n× n array of cells in which
n symbols are placed, one per cell, in such a way that each
symbol occurs once in each row and once in each column.

The symbols may be letters, numbers, colours, . . .

A Latin square of order 8
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Partitions

Definition
A partition of a set Ω is a set Π of pairwise disjoint non-empty
subsets of Ω, called parts, whose union is Ω.

Definition
A partition Π is uniform if all of its parts have the same size,
in the sense that, whenever Γ1 and Γ2 are parts of Π, there is a
bijection from Γ1 onto Γ2.

Example

If Ω is the set of cells in a Latin square, then there are five
natural uniform partitions of Ω:

R each part is a row;
C each part is a column;
L each part consists of the those cells with a given letter;
U the universal partition, with a single part;
E the equality partition, whose parts are singletons.
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Lattices of partitions

If G is transitive but imprimitive on Ω, then G preserves at least
one non-trivial equivalence relation on Ω, by definition.

According to the Equivalence Relation Theorem, an
equivalence relation does the same job as a partition of Ω. We
mostly phrase our results in terms of partitions.
There is a partial order on partitions, defined as follows:

Π1 4 Π2 if every part of Π1 is contained in a part of Π2.

This can be read “Π1 refines Π2” or “Π2 is coarser than Π1”.
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Hasse diagrams

Given a collection P of partitions of a set Ω,
we can show them on a Hasse diagram.
I Draw a dot for each partition in P .
I If Π1 ≺ Π2 then put Π2 higher than Π1 in the diagram.
I If Π1 ≺ Π2 but there is no Π3 in P with Π1 ≺ Π3 ≺ Π2

then draw a line from Π1 to Π2.

Here is the Hasse diagram for a Latin square.
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Lattices

The partitions of Ω, with this order, form a lattice.

The meet or infimum Π1 ∧Π2 is the partition whose parts are
all non-empty intersections of parts of Π1 and Π2.
The join or supremum Π1 ∨Π2 is the partition defined as
follows: form a graph where two points are joined if they lie in
the same part of either Π1 or Π2; the join is the partition into
connected components of this graph.
As noted, partitions can also be regarded as equivalence
relations. The composition of two relations R1 and R2 is the
relation R1 ◦ R2 consisting of all pairs (α, β) for which there
exists γ such that (α, γ) ∈ R1 and (γ, β) ∈ R2. Two relations R1
and R2 commute if R1 ◦ R2 = R2 ◦ R1.
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Orthogonal block structures

Here is an alternative definition of Latin square.

Definition
A Latin square is a set {R, C, L} of pairwise commuting
uniform partitions of a set Ω which satisfy
R∧ C = R∧ L = C∧ L = E and R∨ C = R∨ L = C∨ L = U.

Definition
An orthogonal block structure or OBS is a sublattice of the
partition lattice consisting of commuting uniform partitions.

So Latin squares are OBS.
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Properties

Proposition

I Let Π1 and Π2 be equivalence relations. Then
Π1 ∨Π2 = Π1 ◦Π2 if and only if Π1 and Π2 commute.

I A lattice of pairwise commuting partitions is modular.

A lattice is modular if a 4 c implies

a∨ (b∧ c) = (a∨ b) ∧ c.

The modular law is implied by the distributive laws

a∨ (b∧ c) = (a∨ b) ∧ (a∨ c), a∧ (b∨ c) = (a∧ b) ∨ (a∧ c),

which are equivalent to one another.
An OBS which is a distributive lattice is called a poset block
structure or PBS. More on these later!
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Statisticians at Rothamsted

Here are some of the statisticians who have worked at the
agricultural research station at Rothamsted.

Ronald Fisher 1919–1933 then UCL, then Cambridge
Frank Yates 1931–1968
Oscar Kempthorne 1941–1946 then Ames, Iowa
Desmond Patterson 1947–1967 then Edinburgh
John Nelder 1968–1984 previously National

Vegetable Research Station
Rosemary Bailey 1981–1990
Robin Thompson 1997–now previously Edinburgh,

now emeritus
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Ronald Fisher

Trivial OBS (only U and E).

Blocks containing plots.

A rectangle with one plot in each
Row-Column intersection.
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Frank Yates

Many more OBS, including
I blocks containing plots

containing subplots
I several rectangles
I a rectangle with subplots
I several rectangles with

subplots.
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John Nelder: Crossing and Nesting

If Π1 is a partition of Ω1 and Π2 is a
partition of Ω2 then Π1 ×Π2 is the
partition of Ω1×Ω2 whose parts are
intersections of a part of Π1 with a
part of Π2.

Put Pi = (Ωi,Bi), where Bi is a col-
lection of partitions of Ωi.
Crossing P1 with P2 gives the set
P1 ×P2 of partitions

{Π1 ×Π2 : Π1 ∈ B1, Π2 ∈ B2}.

Nesting P2 within P1 gives the set
P1/P2 of partitions {Π1 × U2 :
Π1 ∈ B1} ∪ {E1 × P2 : Π2 ∈ B2}.
Iterated crossing and nesting gives
simple orthogonal block structures.
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Desmond Patterson
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Nelder’s papers

In 1976–1978 I was employed as a post-doctoral research fellow
in the Statistics Department at Edinburgh University.
The aim was to apply ideas from combinatorics and
group theory to design of experiments.

At the start, Desmond Patterson gave me copies of John
Nelder’s two 1965 papers on orthogonal block structure,
and told me to read them.
After three months, I said “OK, I understand them now.”
Desmond responded “Hmph! That’s good. No one else does.”
I did not believe him then, but, looking back, I can see that his
approach did not incorporate Nelder’s ideas until much later.
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Oscar Kempthorne’s papers

Then my colleague Robin Thompson gave me a 1961 technical
report (long, but in typescript) by Oscar Kempthorne and his
colleagues in Ames. This developed essentially the same ideas
as Nelder’s: lattices of partitions using some of the partitions in
a Cartesian lattice (not necessarily with all coordinates having
the same number of values, for example, the rows and columns
of a rectangle).

Later I learnt that Kempthorne was furious that Nelder had
“stolen” his ideas. I believe that they simply developed them
independently, building on the work of Fisher and Yates. In
those days, it took much longer for ideas to circulate widely.
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Putting the bits together

One morning, I came into work after drinking too much in the
pub the previous evening. I realised that my brain was not
capable of serious work, so I gave it the apparently simple task
of matching Nelder’s block structures with those of
Kempthorne. Slowly, I worked through dimensions 1, 2 and 3.

At the end of the day, I hit a problem.
For dimension 4, Nelder’s approach gave 15 possibilities,
but Kempthorne’s gave 16. I gave up and went home.
The next day, with a clear head, I realised that Kempthorne’s
approach always gives more possibilities than Nelder’s in
dimensions at least 4.
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SOBS ⇒ poset, but not vice versa

crossing

u u
nesting

u
u

not from SOBS

u
u

u
u

@
@
@

Kempthorne’s method gives all posets.

Crossing and nesting give a similar formula in the statistical
software R for use in analysis of variance.
“(Fields/Plots)× Year” becomes “(Fields/Plots) ∗ Year”.

When Terry Speed and RAB combined the two approaches in
1982, we called the structures poset block structures.
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How do we define PBS?

(Fields/Plots)× Year

u
u uF

P
Y

Same Field, same Plot ≺ Same Field

{F, P} ⊃ {F}

These partial orders correspond, but they are the opposite way
round.
For years I have struggled with the problem of how to show
these consistently on Hasse diagrams.
Fortunately, my co-authors came up with a clever solution.

Not necessarily same Year ≺ Not necessarily same Plot or Year

{Y} ⊂ {P, Y}
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Definition of Poset Block Structure

Let (M,v) be a partially ordered set.

Definition
A down-set in M is a subset D of M with the property that,
if m ∈ D and m′ @ m, then m′ ∈ D.
The down-sets form a lattice under the operations of
intersection and union.

Let N = |M|.
For each element mi of M, let Ωi be a set of size ni > 1.
Let Ω be the Cartesian product of the sets Ωi for all mi in M .

Now we define a partition ΠD for each down-set D of M . This
is done as follows.

Definition
Elements (α1, . . . , αN) and (β1, . . . , βN) are in the same part of
ΠD if and only if αi = βi for all i with mi /∈ D.
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Easy consequences

E = Π∅ and U = ΠM.

If D1 and D2 are down-sets of M then

ΠD1 ∧ΠD2 = ΠD1∩D2 and ΠD1 ∨ΠD2 = ΠD1∪D2 .

So the partitions ΠD form a lattice isomorphic to the lattice of
down-sets of M.
Now we have two posets:
(M,v) and ({ΠD : D is a downset of M},4).
Do not confuse these with each other!

Kempthorne and his colleagues did make this mistake.
They tried to draw a single Hasse diagram showing both of
these posets at once.

In June 1988 I took time out from a 2-week conference in
Minneapolis to visit Kempthorne. He was very friendly, and
said that he much appreciated my work on PBS.
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Generalised wreath product

Definition
For each i in {1, . . . , N}, let A(i) be the set
{j ∈ {1, . . . , N} : mi @ mj} (these are the ancestors of i.)

Let Ωi be the Cartesian product Πj∈A(i)Ωj,
and let πi be the natural projection from Ω onto Ωi.
Let G(mi) be a permutation group on Ωi,
and let Fi be the set of all functions from Ωi into G(mi).
Each fi ∈ Fi allocates a permutation in G(mi) to each tuple in Ωi.
The generalized wreath product G of the groups G(m1), . . . ,
G(mN) over the poset M is the group ΠN

i=1Fi, acting on Ω as
follows: if ω = (ω1, . . . , ωN) ∈ Ω and f = ΠN

i=1fi ∈ G, then

(ωf )i = ωi(ωπifi) for i = 1, . . . , N.
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Automorphism groups of block structures

Theorem
The automorphism group of the PBS is the generalized wreath
product of symmetric groups Sni over the poset (M,v).

By contrast, an orthogonal block structure may have only the
trivial group of automorphisms.
We saw earlier that Latin squares give rise to OBSs (consisting
of the two partitions E and U and the row, column, and letter
partitions). It is known that almost all Latin squares have trivial
automorphism group.
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Some comments on generalised wreath products

1. If N = 2 and (M,v) is an antichain then the GWP is
G(m1)×G(m2).

2. If N = 2 and (M,v) is a chain with m1 @ m2 then the GWP
is G(m1) oG(m2).

3. If the poset (M,v) can be made by iterated crossing and
nesting (as in a simple orthogonal block structure)
then the GWP can be made by iterating the corresponding
direct and wreath products.

4. If the poset (M,v) cannot be made in this way,
then neither can the GWP.
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Permutation groups

Proposition

The invariant partitions for a transitive permutation group form a
lattice of uniform partitions.

Thus if the partitions commute pairwise, they form an
orthogonal block structure. This seems to happen remarkably
often for small transitive groups: for example, it holds for 1886
of the 1954 transitive groups of degree 16.
If the invariant partitions for G form a chain, then they
commute pairwise. We do not know a weaker lattice property
that forces the partitions to commute. Even requiring the lattice
to be Boolean (isomorphic to the lattice of subsets of a set) does
not suffice for this.
We say that the transitive group G has the OB property if the
invariant partitions commute (and so form an orthogonal block
structure). It has the PB property if the lattice is distributive
(and so is a poset block structure).
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not suffice for this.
We say that the transitive group G has the OB property if the
invariant partitions commute (and so form an orthogonal block
structure). It has the PB property if the lattice is distributive
(and so is a poset block structure).
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Commuting subgroups

Let H and K be subgroups of a group G, with H ≤ K. The
corresponding interval in the subgroup lattice consists of all
subgroups X for which H ≤ X ≤ K; it is a lattice, with
X ∧ Y = X ∩ Y and X ∨ Y = 〈X, Y〉.

Let G be transitive on Ω, and Gα the stabiliser of α ∈ Ω. There is
a natural isomorphism between the lattice of G-invariant
partitions of Ω and the interval from Gα to G: the part of Π
containing α is the the orbit containing α of the corresponding
subgroup. Moreover, partitions corresponding to X and Y
commute if and only if XY = YX: we say that X and Y
commute (to avoid confusion with permutations). Thus:

Proposition

G has the OB property if and only if the subgroups containing Gα

commute pairwise.
In particular, a regular permutation group has the OB property
if and only if all its subgroups commute pairwise. These
groups were determined by Iwasawa.
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Pre-primitivity

My earlier paper with Marina studied the following property.
A transitive permutation group G is pre-primitive if every
G-invariant partition is the orbit partition of a subgroup of G.
We can take this subgroup to be the full stabiliser of the
partition, and so it is a normal subgroup of G. Since normal
subgroups commute, we see:

Proposition

A pre-primitive group has the OB property.
For the record: A permutation group is quasiprimitive if every
non-trivial normal subgroup is transitive; thus, as mentioned
earlier, a group is primitive if and only if it is pre-primitive and
quasiprimitive.
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Generalised wreath products

Our first main theorem is the following:

Theorem
A generalised wreath product of primitive permutation groups
(Gm : m ∈ M) is pre-primitive and has the OB property; it has the
PB property if and only if there do not exist incomparable elements
m1, m2 ∈ M such that Gm1 and Gm2 are cyclic of the same prime
order.

The reason is that, if G and H are primitive, then the only
non-trivial invariant partitions of G×H correspond to orbits of
G and of H, unless G = H = Cp for some prime p, in which case
there are p + 1 invariant partitions. (Recall that G×H is the
g.w.p. of G and H over the poset consisting of two
incomparable elements.)
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The Krasner–Kaloujnine theorem

This is the following well-known result:

Theorem
Let G be a transitive imprimitive permutation group, with non-trivial
invariant partition Π. Then G is naturally embeddable in the wreath
product H o K, where H is the permutation group induced on a part of
Π by its setwise stabiliser, and K the permutation group induced on
the set of parts of Π by G.

Is there an extension to our situation? The answer is yes . . .
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First attempt

Let G be a transitive group with the PB property, and let Λ(G)
be the lattice of G-invariant partitions. Then Λ is isomorphic to
the lattice of down-sets in the poset M, whose elements can be
recovered as the non-E join-indecomposable (JI) elements of Λ.
If Π is the partition corresponding to m ∈ M, then there is a
unique maximal partition Π− below Π, and we could define
Gm to be the stabiliser of a part of Π acting on the set of parts of
Π− below it.

Unfortunately this does not work. The symmetric group S6 has
an outer automorphism, so acts in different ways on two sets of
size 6. Let Ω be their Cartesian product. The only non-trivial
partitions for G on Ω are given by the coordinate projections,
and the stabiliser of a part acts on it as PGL(2, 5). But S6 is not a
subgroup of PGL(2, 5)× PGL(2, 5).
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Second attempt

There is a way round this. Show that there is a unique maximal
G-invariant partition Ψ such that Ψ ∧Π = Π−, and that Ψ is
also JI. Then let G∗m be the group induced by the stabiliser of a
part of Ψ on the parts of Ψ− it contains. Now G∗m ≥ Gm, and we
have:

Theorem
Let G be a permutation group on Ω with the PB property, and let M
be the corresponding poset and G∗m the group defined above for
m ∈ M. Then G is naturally embedded in the generalised wreath
product of the groups G∗m over the poset M.
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Varying the poset

The direct product G1 ×G2 of transitive groups is naturally
embedded in the wreath product in either order; indeed, it is
their intersection. Can we generalise this?

Given two partial orders on a set M, their intersection is just the
intersection of the sets of ordered pairs forming the two
relations.

Theorem
Let v1 and v2 be two partial orders on a set M, and
F = (Gm : m ∈ M) a family of transitive groups indexed by M.
I The intersection of the g.w.p.s of F over v1 and v2 is the g.w.p.

over their intersection.
I If v1 is contained in v2, then the g.w.p. over v1 is embedded in

the g.w.p. over v2.
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Linear extensions

Let M be a totally ordered set, say {1 < 2 < · · · < r}, and let Gi
be a transitive permutation group for each i ∈ M. The
generalised wreath product over this poset is simply the
iterated wreath product

G1 oG2 o · · · oGr.

Since the wreath product is associative, we do not need to
bracket this expression.
A linear extension of a poset is a linear order containing the
given poset. It is well known that any finite poset is the
intersection of its linear extensions.

Theorem
The generalised wreath product of a family (Gm : m ∈ M) of
transitive permutation groups over a poset (M,v) is the intersection
of the iterated wreath products over all linear extensions of (M,v).
This is immediate from the preceding theorem.
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