Permutation groups, lattices and orthogonal block structures

Rosemary A. Bailey and Peter J. Cameron University of St Andrews with Marina Anagnostopoulou-Merkouri (Bristol)

St Andrews Algebra and Combinatorics Seminar 17 October 2024

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures

Algebra and Combinatorics 1/34

In the summer of 2022, Marina had a research internship in the department to work with Peter. Having finished before the money ran out, we looked at a new property of finite permutation groups which we called **pre-primitivity**. The idea was that pre-primitivity and quasiprimitivity were independent but together were equivalent to primitivity.

In the summer of 2022, Marina had a research internship in the department to work with Peter. Having finished before the money ran out, we looked at a new property of finite permutation groups which we called **pre-primitivity**. The idea was that pre-primitivity and quasiprimitivity were independent but together were equivalent to primitivity. In the next academic year, Marina had a STARIS internship, and we looked more generally at properties of transitive imprimitive permutation groups, which led to the work we describe here.

This was the title of a lecture course by Donald Higman in Oxford in 1969–1970. If *G* is a permutation group on Ω which is primitive but not doubly transitive, then the orbital digraphs (whose edge sets are non-diagonal orbits of *G* on Ω^2) are connected, and together they form what Higman called a coherent configuration, whose adjacency matrices span an associative algebra.

This was the title of a lecture course by Donald Higman in Oxford in 1969–1970. If *G* is a permutation group on Ω which is primitive but not doubly transitive, then the orbital digraphs (whose edge sets are non-diagonal orbits of *G* on Ω^2) are connected, and together they form what Higman called a coherent configuration, whose adjacency matrices span an associative algebra.

Similar ideas were being developed by Boris Weisfeiler for the graph isomorphism problem, and by R. C. Bose and his students for design and analysis of experiments.

This was the title of a lecture course by Donald Higman in Oxford in 1969–1970. If *G* is a permutation group on Ω which is primitive but not doubly transitive, then the orbital digraphs (whose edge sets are non-diagonal orbits of *G* on Ω^2) are connected, and together they form what Higman called a coherent configuration, whose adjacency matrices span an associative algebra.

Similar ideas were being developed by Boris Weisfeiler for the graph isomorphism problem, and by R. C. Bose and his students for design and analysis of experiments. Our aim was to do something similar for transitive but imprimitive groups.

Definition

Let *n* be a positive integer.

A Latin square of order n is an $n \times n$ array of cells in which n symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.

Definition

Let *n* be a positive integer.

A Latin square of order *n* is an $n \times n$ array of cells in which *n* symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column. The symbols may be letters, numbers, colours, ...

What is a Latin square?

Definition

Let *n* be a positive integer.

A Latin square of order n is an $n \times n$ array of cells in which n symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.

The symbols may be letters, numbers, colours, ...

A Latin square of order 8

Partitions

Definition

A partition of a set Ω is a set Π of pairwise disjoint non-empty subsets of Ω , called parts, whose union is Ω .

Partitions

Definition

A partition of a set Ω is a set Π of pairwise disjoint non-empty subsets of Ω , called parts, whose union is Ω .

Definition

A partition Π is uniform if all of its parts have the same size, in the sense that, whenever Γ_1 and Γ_2 are parts of Π , there is a bijection from Γ_1 onto Γ_2 .

Partitions

Definition

A partition of a set Ω is a set Π of pairwise disjoint non-empty subsets of Ω , called parts, whose union is Ω .

Definition

A partition Π is uniform if all of its parts have the same size, in the sense that, whenever Γ_1 and Γ_2 are parts of Π , there is a bijection from Γ_1 onto Γ_2 .

Example

If Ω is the set of cells in a Latin square, then there are five natural uniform partitions of Ω :

- *R* each part is a row;
- *C* each part is a column;
- *L* each part consists of the those cells with a given letter;
- *U* the **universal** partition, with a single part;
- *E* the equality partition, whose parts are singletons.

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures

If *G* is transitive but imprimitive on Ω , then *G* preserves at least one non-trivial equivalence relation on Ω , by definition.

If *G* is transitive but imprimitive on Ω , then *G* preserves at least one non-trivial equivalence relation on Ω , by definition. According to the Equivalence Relation Theorem, an equivalence relation does the same job as a partition of Ω . We mostly phrase our results in terms of partitions. If *G* is transitive but imprimitive on Ω , then *G* preserves at least one non-trivial equivalence relation on Ω , by definition. According to the Equivalence Relation Theorem, an equivalence relation does the same job as a partition of Ω . We mostly phrase our results in terms of partitions. There is a partial order on partitions, defined as follows: $\Pi_1 \preccurlyeq \Pi_2$ if every part of Π_1 is contained in a part of Π_2 . If *G* is transitive but imprimitive on Ω , then *G* preserves at least one non-trivial equivalence relation on Ω , by definition. According to the Equivalence Relation Theorem, an equivalence relation does the same job as a partition of Ω . We mostly phrase our results in terms of partitions. There is a partial order on partitions, defined as follows: $\Pi_1 \preccurlyeq \Pi_2$ if every part of Π_1 is contained in a part of Π_2 .

This can be read " Π_1 refines Π_2 " or " Π_2 is coarser than Π_1 ".

Hasse diagrams

Given a collection \mathcal{P} of partitions of a set Ω , we can show them on a Hasse diagram.

- Draw a dot for each partition in \mathcal{P} .
- If $\Pi_1 \prec \Pi_2$ then put Π_2 higher than Π_1 in the diagram.
- If Π₁ ≺ Π₂ but there is no Π₃ in P with Π₁ ≺ Π₃ ≺ Π₂ then draw a line from Π₁ to Π₂.

Hasse diagrams

Given a collection \mathcal{P} of partitions of a set Ω , we can show them on a Hasse diagram.

- Draw a dot for each partition in \mathcal{P} .
- If $\Pi_1 \prec \Pi_2$ then put Π_2 higher than Π_1 in the diagram.
- If Π₁ ≺ Π₂ but there is no Π₃ in P with Π₁ ≺ Π₃ ≺ Π₂ then draw a line from Π₁ to Π₂.

Here is the Hasse diagram for a Latin square.

The partitions of Ω , with this order, form a lattice.

The partitions of Ω , with this order, form a lattice. The meet or infimum $\Pi_1 \wedge \Pi_2$ is the partition whose parts are all non-empty intersections of parts of Π_1 and Π_2 . The partitions of Ω , with this order, form a lattice. The meet or infimum $\Pi_1 \wedge \Pi_2$ is the partition whose parts are all non-empty intersections of parts of Π_1 and Π_2 . The join or supremum $\Pi_1 \vee \Pi_2$ is the partition defined as follows: form a graph where two points are joined if they lie in the same part of either Π_1 or Π_2 ; the join is the partition into connected components of this graph. The partitions of Ω , with this order, form a lattice. The meet or infimum $\Pi_1 \wedge \Pi_2$ is the partition whose parts are all non-empty intersections of parts of Π_1 and Π_2 . The join or supremum $\Pi_1 \vee \Pi_2$ is the partition defined as follows: form a graph where two points are joined if they lie in the same part of either Π_1 or Π_2 ; the join is the partition into connected components of this graph. As noted, partitions can also be regarded as equivalence relations. The composition of two relations R_1 and R_2 is the

relation $R_1 \circ R_2$ consisting of all pairs (α, β) for which there exists γ such that $(\alpha, \gamma) \in R_1$ and $(\gamma, \beta) \in R_2$. Two relations R_1 and R_2 commute if $R_1 \circ R_2 = R_2 \circ R_1$.

Bailey and Cameron

The partitions of Ω , with this order, form a lattice. The meet or infimum $\Pi_1 \wedge \Pi_2$ is the partition whose parts are all non-empty intersections of parts of Π_1 and Π_2 . The join or supremum $\Pi_1 \vee \Pi_2$ is the partition defined as follows: form a graph where two points are joined if they lie in the same part of either Π_1 or Π_2 ; the join is the partition into connected components of this graph. As noted, partitions can also be regarded as equivalence relations. The composition of two relations R_1 and R_2 is the

relation $R_1 \circ R_2$ consisting of all pairs (α, β) for which there exists γ such that $(\alpha, \gamma) \in R_1$ and $(\gamma, \beta) \in R_2$. Two relations R_1 and R_2 commute if $R_1 \circ R_2 = R_2 \circ R_1$.

Bailey and Cameron

Here is an alternative definition of Latin square.

Definition

A Latin square is a set $\{R, C, L\}$ of pairwise commuting uniform partitions of a set Ω which satisfy $R \wedge C = R \wedge L = C \wedge L = E$ and $R \vee C = R \vee L = C \vee L = U$. Here is an alternative definition of Latin square.

Definition

A Latin square is a set $\{R, C, L\}$ of pairwise commuting uniform partitions of a set Ω which satisfy $R \wedge C = R \wedge L = C \wedge L = E$ and $R \vee C = R \vee L = C \vee L = U$.

Definition

An orthogonal block structure or OBS is a sublattice of the partition lattice consisting of commuting uniform partitions.

Here is an alternative definition of Latin square.

Definition

A Latin square is a set $\{R, C, L\}$ of pairwise commuting uniform partitions of a set Ω which satisfy $R \wedge C = R \wedge L = C \wedge L = E$ and $R \vee C = R \vee L = C \vee L = U$.

Definition

An orthogonal block structure or OBS is a sublattice of the partition lattice consisting of commuting uniform partitions.

So Latin squares are OBS.

• Let Π_1 and Π_2 be equivalence relations. Then $\Pi_1 \vee \Pi_2 = \Pi_1 \circ \Pi_2$ if and only if Π_1 and Π_2 commute.

- Let Π_1 and Π_2 be equivalence relations. Then $\Pi_1 \lor \Pi_2 = \Pi_1 \circ \Pi_2$ if and only if Π_1 and Π_2 commute.
- ► A lattice of pairwise commuting partitions is modular.

- Let Π_1 and Π_2 be equivalence relations. Then $\Pi_1 \lor \Pi_2 = \Pi_1 \circ \Pi_2$ if and only if Π_1 and Π_2 commute.
- ► A lattice of pairwise commuting partitions is modular.

A lattice is **modular** if $a \preccurlyeq c$ implies

$$a \lor (b \land c) = (a \lor b) \land c.$$

- Let Π_1 and Π_2 be equivalence relations. Then $\Pi_1 \lor \Pi_2 = \Pi_1 \circ \Pi_2$ if and only if Π_1 and Π_2 commute.
- ► A lattice of pairwise commuting partitions is modular.

A lattice is **modular** if $a \preccurlyeq c$ implies

$$a \lor (b \land c) = (a \lor b) \land c.$$

The modular law is implied by the distributive laws

 $a \lor (b \land c) = (a \lor b) \land (a \lor c), \quad a \land (b \lor c) = (a \land b) \lor (a \land c),$

which are equivalent to one another.

- Let Π_1 and Π_2 be equivalence relations. Then $\Pi_1 \vee \Pi_2 = \Pi_1 \circ \Pi_2$ if and only if Π_1 and Π_2 commute.
- ► A lattice of pairwise commuting partitions is modular.

A lattice is **modular** if $a \preccurlyeq c$ implies

$$a \lor (b \land c) = (a \lor b) \land c.$$

The modular law is implied by the distributive laws

$$a \lor (b \land c) = (a \lor b) \land (a \lor c), \quad a \land (b \lor c) = (a \land b) \lor (a \land c),$$

which are equivalent to one another. An OBS which is a distributive lattice is called a **poset block structure** or **PBS**. More on these later!

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures

Here are some of the statisticians who have worked at the agricultural research station at Rothamsted.

Ronald Fisher	1919–1933	then UCL, then Cambridge
Frank Yates	1931–1968	
Oscar Kempthorne	1941–1946	then Ames, Iowa
Desmond Patterson	1947–1967	then Edinburgh
John Nelder	1968–1984	previously National
		Vegetable Research Station
Rosemary Bailey	1981–1990	
Robin Thompson	1997–now	previously Edinburgh,
		now emeritus

Trivial OBS (only *U* and *E*).

Blocks containing plots.

A rectangle with one plot in each Row-Column intersection.

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures

Algebra and Combinatorics 12/34

Many more OBS, including

- blocks containing plots containing subplots
- several rectangles
- a rectangle with subplots
- several rectangles with subplots.

John Nelder: Crossing and Nesting

If Π_1 is a partition of Ω_1 and Π_2 is a partition of Ω_2 then $\Pi_1 \times \Pi_2$ is the partition of $\Omega_1 \times \Omega_2$ whose parts are intersections of a part of Π_1 with a part of Π_2 .

John Nelder: Crossing and Nesting

If Π_1 is a partition of Ω_1 and Π_2 is a partition of Ω_2 then $\Pi_1 \times \Pi_2$ is the partition of $\Omega_1 \times \Omega_2$ whose parts are intersections of a part of Π_1 with a part of Π_2 . Put $\mathcal{P}_i = (\Omega_i, \mathcal{B}_i)$, where \mathcal{B}_i is a col-

lection of partitions of Ω_i .
John Nelder: Crossing and Nesting

If Π_1 is a partition of Ω_1 and Π_2 is a partition of Ω_2 then $\Pi_1 \times \Pi_2$ is the partition of $\Omega_1 \times \Omega_2$ whose parts are intersections of a part of Π_1 with a part of Π_2 .

Put $\mathcal{P}_i = (\Omega_i, \mathcal{B}_i)$, where \mathcal{B}_i is a collection of partitions of Ω_i .

Crossing \mathcal{P}_1 with \mathcal{P}_2 gives the set $\mathcal{P}_1 \times \mathcal{P}_2$ of partitions

 $\{\Pi_1 \times \Pi_2 : \Pi_1 \in \mathcal{B}_1, \Pi_2 \in \mathcal{B}_2\}.$

John Nelder: Crossing and Nesting

If Π_1 is a partition of Ω_1 and Π_2 is a partition of Ω_2 then $\Pi_1 \times \Pi_2$ is the partition of $\Omega_1 \times \Omega_2$ whose parts are intersections of a part of Π_1 with a part of Π_2 .

Put $\mathcal{P}_i = (\Omega_i, \mathcal{B}_i)$, where \mathcal{B}_i is a collection of partitions of Ω_i .

Crossing \mathcal{P}_1 with \mathcal{P}_2 gives the set $\mathcal{P}_1 \times \mathcal{P}_2$ of partitions

 $\{\Pi_1 \times \Pi_2 : \Pi_1 \in \mathcal{B}_1, \Pi_2 \in \mathcal{B}_2\}.$

Nesting \mathcal{P}_2 within \mathcal{P}_1 gives the set $\mathcal{P}_1/\mathcal{P}_2$ of partitions $\{\Pi_1 \times U_2 : \Pi_1 \in \mathcal{B}_1\} \cup \{E_1 \times P_2 : \Pi_2 \in \mathcal{B}_2\}.$

John Nelder: Crossing and Nesting

If Π_1 is a partition of Ω_1 and Π_2 is a partition of Ω_2 then $\Pi_1 \times \Pi_2$ is the partition of $\Omega_1 \times \Omega_2$ whose parts are intersections of a part of Π_1 with a part of Π_2 .

Put $\mathcal{P}_i = (\Omega_i, \mathcal{B}_i)$, where \mathcal{B}_i is a collection of partitions of Ω_i .

Crossing \mathcal{P}_1 with \mathcal{P}_2 gives the set $\mathcal{P}_1 \times \mathcal{P}_2$ of partitions

 $\{\Pi_1 \times \Pi_2 : \Pi_1 \in \mathcal{B}_1, \Pi_2 \in \mathcal{B}_2\}.$

Nesting \mathcal{P}_2 within \mathcal{P}_1 gives the set $\mathcal{P}_1/\mathcal{P}_2$ of partitions $\{\Pi_1 \times U_2 : \Pi_1 \in \mathcal{B}_1\} \cup \{E_1 \times P_2 : \Pi_2 \in \mathcal{B}_2\}$. Iterated crossing and nesting gives simple orthogonal block structures.

Bailey and Cameron

Desmond Patterson

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures

Algebra and Combinatorics 15/34

At the start, Desmond Patterson gave me copies of John Nelder's two 1965 papers on orthogonal block structure, and told me to read them.

At the start, Desmond Patterson gave me copies of John Nelder's two 1965 papers on orthogonal block structure, and told me to read them.

After three months, I said "OK, I understand them now."

At the start, Desmond Patterson gave me copies of John Nelder's two 1965 papers on orthogonal block structure, and told me to read them.

After three months, I said "OK, I understand them now."

Desmond responded "Hmph! That's good. No one else does."

At the start, Desmond Patterson gave me copies of John Nelder's two 1965 papers on orthogonal block structure, and told me to read them.

After three months, I said "OK, I understand them now."

Desmond responded "Hmph! That's good. No one else does."

I did not believe him then, but, looking back, I can see that his approach did not incorporate Nelder's ideas until much later.

Oscar Kempthorne's papers

Then my colleague Robin Thompson gave me a 1961 technical report (long, but in typescript) by Oscar Kempthorne and his colleagues in Ames. This developed essentially the same ideas as Nelder's: lattices of partitions using some of the partitions in a Cartesian lattice (not necessarily with all coordinates having the same number of values, for example, the rows and columns of a rectangle).

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures

Algebra and Combinatorics 17/34

Oscar Kempthorne's papers

Then my colleague Robin Thompson gave me a 1961 technical report (long, but in typescript) by Oscar Kempthorne and his colleagues in Ames. This developed essentially the same ideas as Nelder's: lattices of partitions using some of the partitions in a Cartesian lattice (not necessarily with all coordinates having the same number of values, for example, the rows and columns of a rectangle).

Later I learnt that Kempthorne was furious that Nelder had "stolen" his ideas. I believe that they simply developed them independently, building on the work of Fisher and Yates. In those days, it took much longer for ideas to circulate widely.

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures

17/34

One morning, I came into work after drinking too much in the pub the previous evening. I realised that my brain was not capable of serious work, so I gave it the apparently simple task of matching Nelder's block structures with those of Kempthorne. Slowly, I worked through dimensions 1, 2 and 3. One morning, I came into work after drinking too much in the pub the previous evening. I realised that my brain was not capable of serious work, so I gave it the apparently simple task of matching Nelder's block structures with those of Kempthorne. Slowly, I worked through dimensions 1, 2 and 3. At the end of the day, I hit a problem. For dimension 4, Nelder's approach gave 15 possibilities,

but Kempthorne's gave 16. I gave up and went home.

One morning, I came into work after drinking too much in the pub the previous evening. I realised that my brain was not capable of serious work, so I gave it the apparently simple task of matching Nelder's block structures with those of Kempthorne. Slowly, I worked through dimensions 1, 2 and 3.

At the end of the day, I hit a problem.

For dimension 4, Nelder's approach gave 15 possibilities, but Kempthorne's gave 16. I gave up and went home.

The next day, with a clear head, I realised that Kempthorne's approach always gives more possibilities than Nelder's in dimensions at least 4.

Kempthorne's method gives all posets.

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures

Algebra and Combinatorics 19/34

Kempthorne's method gives all posets.

Crossing and nesting give a similar formula in the statistical software R for use in analysis of variance. "(Fields/Plots) × Year" becomes "(Fields/Plots) * Year".

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures

Algebra and Combinatorics 19/34

Kempthorne's method gives all posets.

Crossing and nesting give a similar formula in the statistical software R for use in analysis of variance. "(Fields/Plots) × Year" becomes "(Fields/Plots) * Year".

When Terry Speed and RAB combined the two approaches in 1982, we called the structures **poset block structures**.

How do we define PBS?

$(\text{Fields/Plots}) \times \text{Year}$ $F \bullet$ $\bullet Y$

Same Field, same Plot \prec Same Field $\{F, P\} \supset \{F\}$

ΡÓ

Bailey and Cameron Permutation groups, lattices and orthogonal block structures Algebra and Combinatorics 20/34

How do we define PBS?

$(Fields/Plots) \times Year$ $F \bullet P \bullet Y$ $P \bullet Y$

Same Field, same Plot \prec Same Field

 $\{F,P\}\supset\{F\}$

These partial orders correspond, but they are the opposite way round.

For years I have struggled with the problem of how to show these consistently on Hasse diagrams.

How do we define PBS?

$(Fields/Plots) \times Year$ $F \bullet P \bullet Y$ $P \bullet Y$

Same Field, same Plot ≺ Same Field

 $\{F,P\}\supset\{F\}$

These partial orders correspond, but they are the opposite way round.

For years I have struggled with the problem of how to show these consistently on Hasse diagrams.

Fortunately, my co-authors came up with a clever solution.

Not necessarily same Year \prec Not necessarily same Plot or Year

 $\{Y\} \subset \{P,Y\}$

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures

Algebra and Combinatorics

20/34

Let (M, \sqsubseteq) be a partially ordered set.

Definition

A **down-set** in *M* is a subset *D* of *M* with the property that, if $m \in D$ and $m' \sqsubset m$, then $m' \in D$.

The down-sets form a lattice under the operations of intersection and union.

Let (M, \sqsubseteq) be a partially ordered set.

Definition

A down-set in *M* is a subset *D* of *M* with the property that, if $m \in D$ and $m' \sqsubset m$, then $m' \in D$.

The down-sets form a lattice under the operations of intersection and union.

Let N = |M|.

For each element m_i of M, let Ω_i be a set of size $n_i > 1$.

Let Ω be the Cartesian product of the sets Ω_i for all m_i in M.

Let (M, \sqsubseteq) be a partially ordered set.

Definition

A down-set in *M* is a subset *D* of *M* with the property that, if $m \in D$ and $m' \sqsubset m$, then $m' \in D$.

The down-sets form a lattice under the operations of intersection and union.

Let N = |M|.

For each element m_i of M, let Ω_i be a set of size $n_i > 1$.

Let Ω be the Cartesian product of the sets Ω_i for all m_i in M.

Now we define a partition Π_D for each down-set *D* of *M*. This is done as follows.

Definition

Elements $(\alpha_1, \ldots, \alpha_N)$ and $(\beta_1, \ldots, \beta_N)$ are in the same part of Π_D if and only if $\alpha_i = \beta_i$ for all *i* with $m_i \notin D$.

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures

Algebra and Combinatorics 22/34

If D_1 and D_2 are down-sets of M then

 $\Pi_{D_1} \wedge \Pi_{D_2} = \Pi_{D_1 \cap D_2} \text{ and } \Pi_{D_1} \vee \Pi_{D_2} = \Pi_{D_1 \cup D_2}.$

So the partitions Π_D form a lattice isomorphic to the lattice of down-sets of *M*.

If D_1 and D_2 are down-sets of M then

 $\Pi_{D_1} \wedge \Pi_{D_2} = \Pi_{D_1 \cap D_2} \text{ and } \Pi_{D_1} \vee \Pi_{D_2} = \Pi_{D_1 \cup D_2}.$

So the partitions Π_D form a lattice isomorphic to the lattice of down-sets of *M*.

Now we have two posets: (M, \sqsubseteq) and $({\Pi_D : D \text{ is a downset of } M}, \preccurlyeq)$.

If D_1 and D_2 are down-sets of M then

 $\Pi_{D_1} \wedge \Pi_{D_2} = \Pi_{D_1 \cap D_2} \text{ and } \Pi_{D_1} \vee \Pi_{D_2} = \Pi_{D_1 \cup D_2}.$

So the partitions Π_D form a lattice isomorphic to the lattice of down-sets of *M*.

Now we have two posets: (M, \sqsubseteq) and $({\Pi_D : D \text{ is a downset of } M}, \preccurlyeq)$.

Do not confuse these with each other!

If D_1 and D_2 are down-sets of M then

 $\Pi_{D_1} \wedge \Pi_{D_2} = \Pi_{D_1 \cap D_2} \text{ and } \Pi_{D_1} \vee \Pi_{D_2} = \Pi_{D_1 \cup D_2}.$

So the partitions Π_D form a lattice isomorphic to the lattice of down-sets of *M*.

Now we have two posets:

 (M, \sqsubseteq) and $({\Pi_D : D \text{ is a downset of } M}, \preccurlyeq)$.

Do not confuse these with each other!

Kempthorne and his colleagues did make this mistake. They tried to draw a single Hasse diagram showing both of these posets at once.

If D_1 and D_2 are down-sets of M then

 $\Pi_{D_1} \wedge \Pi_{D_2} = \Pi_{D_1 \cap D_2} \text{ and } \Pi_{D_1} \vee \Pi_{D_2} = \Pi_{D_1 \cup D_2}.$

So the partitions Π_D form a lattice isomorphic to the lattice of down-sets of *M*.

Now we have two posets:

 (M, \sqsubseteq) and $({\Pi_D : D \text{ is a downset of } M}, \preccurlyeq)$.

Do not confuse these with each other!

Kempthorne and his colleagues did make this mistake. They tried to draw a single Hasse diagram showing both of these posets at once.

In June 1988 I took time out from a 2-week conference in Minneapolis to visit Kempthorne. He was very friendly, and said that he much appreciated my work on PBS.

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures

For each *i* in $\{1, ..., N\}$, let A(i) be the set $\{j \in \{1, ..., N\} : m_i \sqsubset m_j\}$ (these are the ancestors of *i*.)

For each *i* in $\{1, ..., N\}$, let A(i) be the set $\{j \in \{1, ..., N\} : m_i \sqsubset m_j\}$ (these are the ancestors of *i*.) Let Ω^i be the Cartesian product $\prod_{j \in A(i)} \Omega_j$,

For each *i* in $\{1, ..., N\}$, let A(i) be the set $\{j \in \{1, ..., N\} : m_i \sqsubset m_j\}$ (these are the ancestors of *i*.) Let Ω^i be the Cartesian product $\prod_{j \in A(i)} \Omega_j$, and let π^i be the natural projection from Ω onto Ω^i .

For each *i* in $\{1, ..., N\}$, let A(i) be the set $\{j \in \{1, ..., N\} : m_i \sqsubset m_j\}$ (these are the ancestors of *i*.) Let Ω^i be the Cartesian product $\prod_{j \in A(i)} \Omega_j$, and let π^i be the natural projection from Ω onto Ω^i . Let $G(m_i)$ be a permutation group on Ω_i ,

For each *i* in $\{1, ..., N\}$, let A(i) be the set $\{j \in \{1, ..., N\} : m_i \sqsubset m_j\}$ (these are the ancestors of *i*.) Let Ω^i be the Cartesian product $\prod_{j \in A(i)} \Omega_j$, and let π^i be the natural projection from Ω onto Ω^i . Let $G(m_i)$ be a permutation group on Ω_i , and let F_i be the set of all functions from Ω^i into $G(m_i)$.

For each *i* in $\{1, ..., N\}$, let A(i) be the set $\{j \in \{1, ..., N\} : m_i \sqsubset m_j\}$ (these are the ancestors of *i*.) Let Ω^i be the Cartesian product $\prod_{j \in A(i)} \Omega_j$, and let π^i be the natural projection from Ω onto Ω^i . Let $G(m_i)$ be a permutation group on Ω_i , and let F_i be the set of all functions from Ω^i into $G(m_i)$. Each $f_i \in F_i$ allocates a permutation in $G(m_i)$ to each tuple in Ω^i .
Definition

For each *i* in $\{1, \ldots, N\}$, let A(i) be the set $\{j \in \{1, ..., N\} : m_i \sqsubset m_i\}$ (these are the ancestors of *i*.) Let Ω^i be the Cartesian product $\prod_{i \in A(i)} \Omega_i$, and let π^i be the natural projection from Ω onto Ω^i . Let $G(m_i)$ be a permutation group on Ω_i , and let F_i be the set of all functions from Ω^i into $G(m_i)$. Each $f_i \in F_i$ allocates a permutation in $G(m_i)$ to each tuple in Ω^i . The generalized wreath product *G* of the groups $G(m_1), \ldots,$ $G(m_N)$ over the poset *M* is the group $\prod_{i=1}^N F_i$, acting on Ω as follows:

Definition

For each *i* in $\{1, \ldots, N\}$, let A(i) be the set $\{j \in \{1, ..., N\} : m_i \sqsubset m_i\}$ (these are the ancestors of *i*.) Let Ω^i be the Cartesian product $\prod_{i \in A(i)} \Omega_i$, and let π^i be the natural projection from Ω onto Ω^i . Let $G(m_i)$ be a permutation group on Ω_i , and let F_i be the set of all functions from Ω^i into $G(m_i)$. Each $f_i \in F_i$ allocates a permutation in $G(m_i)$ to each tuple in Ω^i . The generalized wreath product *G* of the groups $G(m_1), \ldots,$ $G(m_N)$ over the poset *M* is the group $\prod_{i=1}^N F_i$, acting on Ω as follows: if $\omega = (\omega_1, \dots, \omega_N) \in \Omega$ and $f = \prod_{i=1}^N f_i \in G$, then

$$(\omega f)_i = \omega_i(\omega \pi^i f_i)$$
 for $i = 1, \dots, N_i$

Bailey and Cameron

Theorem

The automorphism group of the PBS is the generalized wreath product of symmetric groups S_{n_i} over the poset (M, \sqsubseteq) .

Theorem

The automorphism group of the PBS is the generalized wreath product of symmetric groups S_{n_i} over the poset (M, \sqsubseteq) .

By contrast, an orthogonal block structure may have only the trivial group of automorphisms.

Theorem

The automorphism group of the PBS is the generalized wreath product of symmetric groups S_{n_i} over the poset (M, \sqsubseteq) .

By contrast, an orthogonal block structure may have only the trivial group of automorphisms.

We saw earlier that Latin squares give rise to OBSs (consisting of the two partitions *E* and *U* and the row, column, and letter partitions). It is known that almost all Latin squares have trivial automorphism group.

1. If N = 2 and (M, \sqsubseteq) is an antichain then the GWP is $G(m_1) \times G(m_2)$.

- 1. If N = 2 and (M, \sqsubseteq) is an antichain then the GWP is $G(m_1) \times G(m_2)$.
- 2. If N = 2 and (M, \sqsubseteq) is a chain with $m_1 \sqsubset m_2$ then the GWP is $G(m_1) \wr G(m_2)$.

- 1. If N = 2 and (M, \sqsubseteq) is an antichain then the GWP is $G(m_1) \times G(m_2)$.
- 2. If N = 2 and (M, \sqsubseteq) is a chain with $m_1 \sqsubset m_2$ then the GWP is $G(m_1) \wr G(m_2)$.
- If the poset (*M*, ⊑) can be made by iterated crossing and nesting (as in a simple orthogonal block structure) then the GWP can be made by iterating the corresponding direct and wreath products.

- 1. If N = 2 and (M, \sqsubseteq) is an antichain then the GWP is $G(m_1) \times G(m_2)$.
- 2. If N = 2 and (M, \sqsubseteq) is a chain with $m_1 \sqsubset m_2$ then the GWP is $G(m_1) \wr G(m_2)$.
- If the poset (*M*, ⊑) can be made by iterated crossing and nesting (as in a simple orthogonal block structure) then the GWP can be made by iterating the corresponding direct and wreath products.
- 4. If the poset (M, \sqsubseteq) cannot be made in this way, then neither can the GWP.

The invariant partitions for a transitive permutation group form a lattice of uniform partitions.

The invariant partitions for a transitive permutation group form a lattice of uniform partitions.

Thus if the partitions commute pairwise, they form an orthogonal block structure. This seems to happen remarkably often for small transitive groups: for example, it holds for 1886 of the 1954 transitive groups of degree 16.

The invariant partitions for a transitive permutation group form a lattice of uniform partitions.

Thus if the partitions commute pairwise, they form an orthogonal block structure. This seems to happen remarkably often for small transitive groups: for example, it holds for 1886 of the 1954 transitive groups of degree 16. If the invariant partitions for *G* form a chain, then they commute pairwise. We do not know a weaker lattice property that forces the partitions to commute. Even requiring the lattice to be Boolean (isomorphic to the lattice of subsets of a set) does not suffice for this.

26/34

The invariant partitions for a transitive permutation group form a lattice of uniform partitions.

Thus if the partitions commute pairwise, they form an orthogonal block structure. This seems to happen remarkably often for small transitive groups: for example, it holds for 1886 of the 1954 transitive groups of degree 16.

If the invariant partitions for *G* form a chain, then they commute pairwise. We do not know a weaker lattice property that forces the partitions to commute. Even requiring the lattice to be Boolean (isomorphic to the lattice of subsets of a set) does not suffice for this.

We say that the transitive group *G* has the OB property if the invariant partitions commute (and so form an orthogonal block structure). It has the PB property if the lattice is distributive (and so is a poset block structure).

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures

26/34

Let *H* and *K* be subgroups of a group *G*, with $H \le K$. The corresponding interval in the subgroup lattice consists of all subgroups *X* for which $H \le X \le K$; it is a lattice, with $X \land Y = X \cap Y$ and $X \lor Y = \langle X, Y \rangle$.

Let *H* and *K* be subgroups of a group *G*, with $H \le K$. The corresponding interval in the subgroup lattice consists of all subgroups *X* for which $H \le X \le K$; it is a lattice, with $X \land Y = X \cap Y$ and $X \lor Y = \langle X, Y \rangle$.

Let *G* be transitive on Ω , and G_{α} the stabiliser of $\alpha \in \Omega$. There is a natural isomorphism between the lattice of *G*-invariant partitions of Ω and the interval from G_{α} to *G*: the part of Π containing α is the the orbit containing α of the corresponding subgroup. Moreover, partitions corresponding to *X* and *Y* commute if and only if XY = YX: we say that *X* and *Y* commute (to avoid confusion with permutations). Thus:

Let *H* and *K* be subgroups of a group *G*, with $H \le K$. The corresponding interval in the subgroup lattice consists of all subgroups *X* for which $H \le X \le K$; it is a lattice, with $X \land Y = X \cap Y$ and $X \lor Y = \langle X, Y \rangle$.

Let *G* be transitive on Ω , and G_{α} the stabiliser of $\alpha \in \Omega$. There is a natural isomorphism between the lattice of *G*-invariant partitions of Ω and the interval from G_{α} to *G*: the part of Π containing α is the the orbit containing α of the corresponding subgroup. Moreover, partitions corresponding to *X* and *Y* commute if and only if XY = YX: we say that *X* and *Y* commute (to avoid confusion with permutations). Thus:

Proposition

G has the OB property if and only if the subgroups containing G_{α} commute pairwise.

Let *H* and *K* be subgroups of a group *G*, with $H \le K$. The corresponding interval in the subgroup lattice consists of all subgroups *X* for which $H \le X \le K$; it is a lattice, with $X \land Y = X \cap Y$ and $X \lor Y = \langle X, Y \rangle$.

Let *G* be transitive on Ω , and G_{α} the stabiliser of $\alpha \in \Omega$. There is a natural isomorphism between the lattice of *G*-invariant partitions of Ω and the interval from G_{α} to *G*: the part of Π containing α is the the orbit containing α of the corresponding subgroup. Moreover, partitions corresponding to *X* and *Y* commute if and only if XY = YX: we say that *X* and *Y* commute (to avoid confusion with permutations). Thus:

Proposition

G has the OB property if and only if the subgroups containing G_{α} commute pairwise.

In particular, a regular permutation group has the OB property if and only if all its subgroups commute pairwise. These Bailey and groups were determined by HyasaWastructures Algebra and Combinatorics

27/34

My earlier paper with Marina studied the following property. A transitive permutation group *G* is **pre-primitive** if every *G*-invariant partition is the orbit partition of a subgroup of *G*. We can take this subgroup to be the full stabiliser of the partition, and so it is a normal subgroup of *G*. Since normal subgroups commute, we see:

My earlier paper with Marina studied the following property. A transitive permutation group *G* is **pre-primitive** if every *G*-invariant partition is the orbit partition of a subgroup of *G*. We can take this subgroup to be the full stabiliser of the partition, and so it is a normal subgroup of *G*. Since normal subgroups commute, we see:

Proposition

A pre-primitive group has the OB property.

My earlier paper with Marina studied the following property. A transitive permutation group *G* is **pre-primitive** if every *G*-invariant partition is the orbit partition of a subgroup of *G*. We can take this subgroup to be the full stabiliser of the partition, and so it is a normal subgroup of *G*. Since normal subgroups commute, we see:

Proposition

A pre-primitive group has the OB property.

For the record: A permutation group is **quasiprimitive** if every non-trivial normal subgroup is transitive; thus, as mentioned earlier, a group is primitive if and only if it is pre-primitive and quasiprimitive. Our first main theorem is the following:

Theorem

A generalised wreath product of primitive permutation groups $(G_m : m \in M)$ is pre-primitive and has the OB property; it has the PB property if and only if there do not exist incomparable elements $m_1, m_2 \in M$ such that G_{m_1} and G_{m_2} are cyclic of the same prime order.

Our first main theorem is the following:

Theorem

A generalised wreath product of primitive permutation groups $(G_m : m \in M)$ is pre-primitive and has the OB property; it has the PB property if and only if there do not exist incomparable elements $m_1, m_2 \in M$ such that G_{m_1} and G_{m_2} are cyclic of the same prime order.

The reason is that, if *G* and *H* are primitive, then the only non-trivial invariant partitions of $G \times H$ correspond to orbits of *G* and of *H*, unless $G = H = C_p$ for some prime *p*, in which case there are p + 1 invariant partitions. (Recall that $G \times H$ is the g.w.p. of *G* and *H* over the poset consisting of two incomparable elements.)

This is the following well-known result:

Theorem

Let G be a transitive imprimitive permutation group, with non-trivial invariant partition Π . Then G is naturally embeddable in the wreath product $H \wr K$, where H is the permutation group induced on a part of Π by its setwise stabiliser, and K the permutation group induced on the set of parts of Π by G.

This is the following well-known result:

Theorem

Let G be a transitive imprimitive permutation group, with non-trivial invariant partition Π . Then G is naturally embeddable in the wreath product $H \wr K$, where H is the permutation group induced on a part of Π by its setwise stabiliser, and K the permutation group induced on the set of parts of Π by G.

Is there an extension to our situation? The answer is yes ...

First attempt

Let *G* be a transitive group with the PB property, and let $\Lambda(G)$ be the lattice of *G*-invariant partitions. Then Λ is isomorphic to the lattice of down-sets in the poset *M*, whose elements can be recovered as the non-*E* join-indecomposable (JI) elements of Λ . If Π is the partition corresponding to $m \in M$, then there is a unique maximal partition Π^- below Π , and we could define G_m to be the stabiliser of a part of Π acting on the set of parts of Π^- below it.

First attempt

Let *G* be a transitive group with the PB property, and let $\Lambda(G)$ be the lattice of *G*-invariant partitions. Then Λ is isomorphic to the lattice of down-sets in the poset *M*, whose elements can be recovered as the non-*E* join-indecomposable (JI) elements of Λ . If Π is the partition corresponding to $m \in M$, then there is a unique maximal partition Π^- below Π , and we could define G_m to be the stabiliser of a part of Π acting on the set of parts of Π^- below it.

Unfortunately this does not work. The symmetric group S_6 has an outer automorphism, so acts in different ways on two sets of size 6. Let Ω be their Cartesian product. The only non-trivial partitions for G on Ω are given by the coordinate projections, and the stabiliser of a part acts on it as PGL(2,5). But S_6 is not a subgroup of PGL(2,5) × PGL(2,5). There is a way round this. Show that there is a unique maximal *G*-invariant partition Ψ such that $\Psi \wedge \Pi = \Pi^-$, and that Ψ is also JI. Then let G_m^* be the group induced by the stabiliser of a part of Ψ on the parts of Ψ^- it contains. Now $G_m^* \ge G_m$, and we have:

32/34

There is a way round this. Show that there is a unique maximal *G*-invariant partition Ψ such that $\Psi \wedge \Pi = \Pi^-$, and that Ψ is also JI. Then let G_m^* be the group induced by the stabiliser of a part of Ψ on the parts of Ψ^- it contains. Now $G_m^* \ge G_m$, and we have:

Theorem

Let G be a permutation group on Ω with the PB property, and let M be the corresponding poset and G_m^* the group defined above for $m \in M$. Then G is naturally embedded in the generalised wreath product of the groups G_m^* over the poset M.

Varying the poset

The direct product $G_1 \times G_2$ of transitive groups is naturally embedded in the wreath product in either order; indeed, it is their intersection. Can we generalise this?

Varying the poset

The direct product $G_1 \times G_2$ of transitive groups is naturally embedded in the wreath product in either order; indeed, it is their intersection. Can we generalise this? Given two partial orders on a set M, their intersection is just the intersection of the sets of ordered pairs forming the two relations.

Varying the poset

The direct product $G_1 \times G_2$ of transitive groups is naturally embedded in the wreath product in either order; indeed, it is their intersection. Can we generalise this? Given two partial orders on a set M, their intersection is just the intersection of the sets of ordered pairs forming the two relations.

Theorem

Let \sqsubseteq_1 *and* \sqsubseteq_2 *be two partial orders on a set* M*, and* $\mathcal{F} = (G_m : m \in M)$ *a family of transitive groups indexed by* M*.*

The direct product $G_1 \times G_2$ of transitive groups is naturally embedded in the wreath product in either order; indeed, it is their intersection. Can we generalise this? Given two partial orders on a set M, their intersection is just the intersection of the sets of ordered pairs forming the two relations.

Theorem

Let \sqsubseteq_1 *and* \sqsubseteq_2 *be two partial orders on a set* M*, and* $\mathcal{F} = (G_m : m \in M)$ *a family of transitive groups indexed by* M*.*

► The intersection of the g.w.p.s of F over ⊑₁ and ⊑₂ is the g.w.p. over their intersection.

The direct product $G_1 \times G_2$ of transitive groups is naturally embedded in the wreath product in either order; indeed, it is their intersection. Can we generalise this? Given two partial orders on a set M, their intersection is just the intersection of the sets of ordered pairs forming the two relations.

Theorem

Let \sqsubseteq_1 and \sqsubseteq_2 be two partial orders on a set M, and $\mathcal{F} = (G_m : m \in M)$ a family of transitive groups indexed by M.

- ▶ The intersection of the g.w.p.s of \mathcal{F} over \sqsubseteq_1 and \sqsubseteq_2 is the g.w.p. over their intersection.
- If ⊑₁ is contained in ⊑₂, then the g.w.p. over ⊑₁ is embedded in the g.w.p. over ⊑₂.

Linear extensions

Let *M* be a totally ordered set, say $\{1 < 2 < \cdots < r\}$, and let G_i be a transitive permutation group for each $i \in M$. The generalised wreath product over this poset is simply the iterated wreath product

 $G_1 \wr G_2 \wr \cdots \wr G_r$.

Linear extensions

Let *M* be a totally ordered set, say $\{1 < 2 < \cdots < r\}$, and let G_i be a transitive permutation group for each $i \in M$. The generalised wreath product over this poset is simply the iterated wreath product

 $G_1 \wr G_2 \wr \cdots \wr G_r$.

Since the wreath product is associative, we do not need to bracket this expression.

Linear extensions

Let *M* be a totally ordered set, say $\{1 < 2 < \cdots < r\}$, and let G_i be a transitive permutation group for each $i \in M$. The generalised wreath product over this poset is simply the iterated wreath product

$$G_1 \wr G_2 \wr \cdots \wr G_r.$$

Since the wreath product is associative, we do not need to bracket this expression.

A linear extension of a poset is a linear order containing the given poset. It is well known that any finite poset is the intersection of its linear extensions.
Linear extensions

Let *M* be a totally ordered set, say $\{1 < 2 < \cdots < r\}$, and let G_i be a transitive permutation group for each $i \in M$. The generalised wreath product over this poset is simply the iterated wreath product

$$G_1 \wr G_2 \wr \cdots \wr G_r.$$

Since the wreath product is associative, we do not need to bracket this expression.

A linear extension of a poset is a linear order containing the given poset. It is well known that any finite poset is the intersection of its linear extensions.

Theorem

The generalised wreath product of a family $(G_m : m \in M)$ of transitive permutation groups over a poset (M, \sqsubseteq) is the intersection of the iterated wreath products over all linear extensions of (M, \sqsubseteq) .

This is immediate from the preceding theorem.

Bailey and Cameron

Permutation groups, lattices and orthogonal block structures