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What is Sudoku?

Put numbers 1 . . . 9 in the empty cells so that each number
occurs once in each row, once in each column, and once in each
3 × 3 subsquare.
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Sudoku

There’s no mathematics involved. Use logic and reasoning
to solve the puzzle.

Instructions in The Independent

But isn’t that as good a definition of mathematics as you could
get?
I suspect that they just said “no mathematics” because you
don’t have to do arithmetic operations on the numbers in the
square (unlike variants such as Kakuro or Killer Sudoku).
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Who invented Sudoku?

Was it
▶ Choi Seok-jeong
▶ Jacques Ozanam
▶ Leonhard Euler
▶ W. U. Behrens
▶ John Nelder
▶ Howard Garns
▶ Wayne Gould
▶ Robert Connelly

All of these made some contribution. I will briefly describe
some of the history. All of the first three actually considered a
slightly different question.
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Euler

Euler posed the following question in 1782.
Of 36 officers, one holds each combination of six ranks and
six regiments. Can they be arranged in a 6 × 6 square on a
parade ground, so that each rank and each regiment is repre-
sented once in each row and once in each column?

He was not the first to consider a similar problem. For example,
Ozanam asked whether the sixteen court cards in a pack of
cards (jack, queen king and ace) can be arranged in a 4 × 4
square such that each suit and each value occurs once in each
row and column.



Ozanam: Yes

Ozanam gave a solution to his question:



Euler: NO!!



Why was Euler interested?

A magic square is an n × n square containing the numbers
1, . . . , n2 such that all rows, columns, and diagonals have the
same sum.

Magic squares have interested mathematicians for millennia,
going back to the ancient Chinese, who discovered the 3 × 3
Luo-Shu square around the beginning of the current era. They
were an active research area for mathematicians of many
cultures, including Indian, Greek, Babylonian, Egyptian, and
Pre-Columbian American.
Many people regarded a magic square as a talisman which
would keep them safe in battle if they wore it.
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Melancholia

Here is Dürer’s famous picture Melancholia from 1514. Note the
mathematical and astronomical items featured.

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

I have enlarged the magic square on the wall. All rows,
columns and diagonals sum to 34.
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Euler’s construction

Euler considered his problem in connection with a new
construction of magic squares.

Suppose we have a solution to Euler’s problem with n2 officers
in an n × n square. Number the regiments and the ranks from 0
to n − 1; then each officer is represented by a 2-digit number in
base n, in the range 0 . . . n2 − 1. Add one to get the range
1 . . . n2. It is easy to see that the row and column sums are
constant. A bit of rearrangement usually makes the diagonal
sums constant as well.
Euler called a solution to the officers problem a Graeco-Latin
square.

Cβ Aγ Bα

Aα Bβ Cγ

Bγ Cα Aβ

21 02 10
00 11 22
12 20 01

7 2 3
0 4 8
5 6 1

8 3 4
1 5 9
6 7 2
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Latin squares

A Latin square of order n is an n × n array containing the
symbols 1, . . . , n such that each symbol occurs once in each row
and once in each column. If a Graeco-Latin square has two sets
of symbols, then a square containing only Latin letters should
be a “Latin square”!

Latin squares have many important uses in mathematics and
its applications. Among these are cryptography (one-time
pads) and statistics (experimental design).
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Latin squares in cryptography

The only provably secure cipher is a one-time pad.

This encrypts a string of symbols in a fixed alphabet. It requires
a key, a random string of the same length in the same alphabet,
and an encryption table, a Latin square with rows and columns
labelled by the alphabet.

To encrypt data symbol x with key symbol y, we look in row x
and column y of the encryption table, and put the symbol z in
this cell in the ciphertext.

Here is an example:
Plaintext: ABCABCABC Key: CAAABCBCB

Substitution table:

A B C
A B C A
B C A B
C A B C

Ciphertext: ACABACCBBB
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Cryptography, continued

If the encryption table is not a Latin square, then either some
entry is repeated in a column (in which case the message fails
to be uniquely decipherable), or some entry is repeated in a row
(in which case some information is leaked to the interceptor).

In the Second World War, the Japanese military ciphers often
used the digits 0 · · · 9 as symbols. The ciphers would also often
use a codebook where various commonly used terms were
encoded as groups of four digits. Thus, for example, 0700
could refer to the kōkū tokushi musentai (Air Special Radio Unit),
and 4698 to the kōkū tokushu jōhōtai (Air Special Intelligence
Unit). The key was a string of pseudo-random digits.
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Substitution square for Japanese 6633 cipher

0 1 2 3 4 5 6 7 8 9
0 4 9 5 3 2 7 0 1 6 8
1 7 5 0 9 3 2 1 8 1 4
2 3 1 7 2 8 0 9 6 9 7
3 0 8 4 7 0 1 3 4 5 2
4 5 3 2 4 9 3 8 2 7 6
5 9 0 1 6 7 5 4 7 2 3
6 2 6 8 0 0 9 7 5 3 1
7 6 2 6 1 4 8 6 0 8 5
8 1 7 9 7 1 4 5 9 0 7
9 8 4 3 5 5 6 2 3 4 0

Spot the flaw!



Orthogonal Latin squares

Two Latin squares A and B are orthogonal if, given any k, l,
there are unique i, j such that Aij = k and Bij = l. Thus, a
Graeco-Latin square is a pair of orthogonal Latin squares.

Euler conjectured that a pair of orthogonal Latin squares of
order n exists if and only if n is not congruent to 2 mod 4. It is
easy to see that they cannot exist for order 2.
Euler was right that there do not exist orthogonal Latin squares
of order 6. This was proved in 1900 by Tarry, by exhaustive
enumeration of the possibilities.
It emerged later that, in 1842, the German astronomer Heinrich
Schumacher wrote to Gauss saying that his assistant, Thomas
Claussen, had just shown the non-existence of orthogonal Latin
squares of order 6. But Claussen’s papers have not been found.
But apart from that he was completely wrong. In 1960, Bose,
Shrikhande and Parker (the “Euler spoilers”) showed that there
is a pair of orthogonal Latin squares for every order but 2 and 6.
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Latin squares in statistics

Latin squares are used to “balance” treatments against
systematic variations across the experimental layout.

A Latin square at Rothamsted Experimental Station, designed
by R. A. Bailey; thanks to Sue Welham.
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Orthogonal Latin squares in statistics

Suppose that we ran an experiment in an orchard, with the
treatments assigned according to a Latin square.

Next year, we want to run another experiment on the same
trees. But the trees will still carry the effects of the previous
treatments. So we should use a Latin square orthogonal to the
previous one.
Moral: Use a Latin square which has an “orthogonal mate”.
(Not all of them do!)
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Behrens

The German statistician W. U. Behrens invented gerechte
designs in 1956.

Take an n × n grid divided into n regions, with n cells in each.
A gerechte design for this partition involves filling the cells
with the numbers 1, . . . , n in such a way that each row, column,
or region contains each of the numbers just once. So it is a
special kind of Latin square.

Example

Suppose that there is a boggy patch in the middle of the field.

3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3
1 2 3 4 5
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Orthogonal mates are gerechte designs

Given a Latin square, the positions of the n symbols give rise to
n “regions” of the grid.

A gerechte design for this partition is nothing but an
orthogonal mate to the given square, as the following example
shows:

Example

1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1



Orthogonal mates are gerechte designs

Given a Latin square, the positions of the n symbols give rise to
n “regions” of the grid.
A gerechte design for this partition is nothing but an
orthogonal mate to the given square, as the following example
shows:

Example

1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1



Orthogonal mates are gerechte designs

Given a Latin square, the positions of the n symbols give rise to
n “regions” of the grid.
A gerechte design for this partition is nothing but an
orthogonal mate to the given square, as the following example
shows:

Example

1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1



Orthogonal mates are gerechte designs

Given a Latin square, the positions of the n symbols give rise to
n “regions” of the grid.
A gerechte design for this partition is nothing but an
orthogonal mate to the given square, as the following example
shows:

Example

1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1



Orthogonal mates are gerechte designs

Given a Latin square, the positions of the n symbols give rise to
n “regions” of the grid.
A gerechte design for this partition is nothing but an
orthogonal mate to the given square, as the following example
shows:

Example

1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1



Nelder

The statistician John Nelder defined a critical set in a Latin
square in 1977. This is a partial Latin square which can be
completed in only one way.

Example

1
2

1 3
3 2

1 3 2
3 2 1
2 1

1 3 2
3 2 2
2 1 3

A trade in a Latin square is a collection of entries which can be
“traded” for different entries so that another Latin square is
formed. For example, two rows of a Latin square form a trade,
since we can simply swap them to get a different Latin square.
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since we can simply swap them to get a different Latin square.
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Trades and critical sets

A subset of the entries of a Latin square is a critical set if and
only if it meets every trade.

For example, a critical set can miss at most one row, at most one
column, and at most one symbol (as Sudoku solvers know!).
What is the size of the smallest critical set in an n × n Latin
square? Nelder conjectured that the answer is ⌊n2/4⌋. This is
true for n ≤ 8, but Keith Hermiston found an improved lower
bound for n ≥ 9.
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Garns

So statisticians could have invented Sudoku any time after
1977; but they didn’t.

It was Howard Garns, a retired architect, who put the ideas of
Nelder and Behrens together and turned it into a puzzle in
1979, in Dell Magazines.

A Sudoku puzzle is a critical set for a gerechte design for the
9 × 9 grid partitioned into 3 × 3 subsquares. The puzzler’s job
is to complete the square.

Garns called his puzzle “number place”. It became popular in
Japan under the name “Sudoku” in 1986 and returned to the
West some years later, popularised at first by the New
Zealander Wayne Gould.
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Connelly

Robert Connelly proposed a variant which he called symmetric
Sudoku. The solution must be a gerechte design for all these
regions:

3 5 9 2 4 8 1 6 7
4 8 1 6 7 3 5 9 2
7 2 6 9 1 5 8 3 4
8 1 4 7 3 6 9 2 5
2 6 7 1 5 9 3 4 8
5 9 3 4 8 2 6 7 1
6 7 2 5 9 1 4 8 3
9 3 5 8 2 4 7 1 6
1 4 8 3 6 7 2 5 9

Rows Columns Subsquares
Broken rows Broken columns Locations
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In stained glass

Here is the same square done in stained glass (with colours for
numbers) by David Spiegelhalter, the Professor of Public
Understanding of Risk at the University of Cambridge.

A question for you: Is it art?
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A symmetric Sudoku puzzle

Here for your entertainment is a puzzle which is to be
completed using the rules just described for symmetric Sudoku.

7
7

6
4 3

1 5 8
2 7
1 4
4

1
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All symmetric Sudoku solutions

Symmetric Sudoku has a beautiful mathematical structure.

Rosemary Bailey, Bob Connelly and I had a paper in the
American Mathematical Monthly in 2008 showing that there are
just two essentially different solutions.
The proof involved various topics from mathematics and
beyond, such as affine geometry, perfect error-correcting codes,
and the card game SET®.
I will say a brief word about how SET enters the discussion.
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Sudoku and SET

The card game SET has 81 cards, each of which has four
attributes taking three possible values (number of symbols,
shape, colour, and shading). A winning combination is a set of
three cards on which either the attributes are all the same, or
they are all different.
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Sudoku, SET, and geometry

Each cell of the Sudoku puzzle corresponds to one SET card,
since it can be described by four attributes each with three
values (the “large row” containing it, the row within the “large
row”, the “large column”, and the column within the “large
column”. Connelly’s six types of region have simple
descriptions in this representation.

Also, if you know some geometry, we can number the three
attributes by the set F3 of integers mod 3. So, for example, the
point (1, 2, 0, 1) labels the cell in row 6 and column 2.
The lines in this geometry are the sets of points of the form
a + bt, where a and b are fixed and t runs through F3. They are
precisely the winning combinations in SET!
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All Sudoku solutions

By contrast, Jarvis and Russell showed that the number of
different types of solution to ordinary Sudoku is 5 472 730 538.

They used the Orbit-Counting Lemma:
the number of orbits of a group on a finite set is equal to the
average number of fixed points of the group elements.

An earlier computation by Felgenhauer and Jarvis gives the
total number of solutions to be 6 670 903 752 021 072 936 960.
Now for each conjugacy class of non-trivial symmetries of the
grid, it is somewhat easier to calculate the number of fixed
solutions.
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Some things I haven’t told you

▶ How many Sudoku puzzles are there? How many are
critical sets, in the sense that if we leave out any entry then
the solution is no longer unique?

▶ What is the smallest number of entries in a Sudoku critical
set?

The first is not known. But the second is . . .
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Smallest number of entries in a Sudoku puzzle

It was shown by Gary McGuire, Bastian Tugemann, and Gilles
Civario that the smallest number of entries in a valid Sudoku
puzzle is 17.

Here is a 17-entry puzzle constructed by Gordon Royle.
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5 1

8 6
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