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Why so many coauthors?

The Argentine author Jorge Luis Borges wrote an essay entitled
“Kafka and his precursors”. He pointed to many works of
literature, from cultures all over the world, which we would
not have regarded as part of a single genre had Franz Kafka not
existed. As it is, we would call all these works “Kafkaesque”.

In a similar way, there are a number of works, including papers
by Burnside, Gaschütz and B. H. Neumann, which we can now
recognise as inverse group theory.
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Integrals of groups

The Fundamental Theorem of Calculus tells us that derivative
and integral are inverse operations.

So Alireza Abdollahi suggested that, given a group G, the
group H is an integral of G if the derived group of H is equal
to G.
The problem is fairly old. The earliest reference we have found
is a result of Burnside, but the problem in general was
considered by Bernhard Neumann in the 1950s.

Question
Which groups are integrable?
Embarrassingly, we don’t know; we don’t even know if it is
decidable for finite groups. . .
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Inverse Frattini

Neumann also considered the question: Which groups G are
Frattini subgroups Φ(H) of groups H?

After contributions from Gaschütz, Allenby, and Wright, a
complete solution to this question for finite groups was given
by Bettina Eick:

Theorem
The finite group G is the Frattini subgroup of a finite group H if and
only if Inn(G) ≤ Φ(Aut(G)).
This is a completely satisfactory solution to the question, but it
leaves open various other questions, such as: how many
groups of order n are Frattini subgroups? For which n is every
group of order n a Frattini subgroup? And what happens for
infinite groups?
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Recent history

About a decade ago, João Araújo and Francesco Matucci posed
the topic of integrals of groups to me. I thought at first this
would be light, recreational mathematics. We wrote a paper,
which was published in 2019.

Some of the main results were:
▶ If a finite group has an integral, then it has a finite integral.
▶ A precise characterization of the set of natural numbers n

for which every group of order n is integrable: these are
the cubefree numbers n which do not have prime divisors
p and q with q | p − 1.

▶ An abelian group of order n has an integral of order at
most n1+o(1), but may fail to have an integral of order
bounded by cn for constant c.

▶ A finite group can be integrated n times (in the class of
finite groups) for every n if and only if it is a central
product of an abelian group and a perfect group.
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In early 2020, after the Covid pandemic had reached north Italy
but before it arrived in Florence, Carlo Casolo invited
Francesco and me to visit, and we worked on several open
problems from the paper.

Sadly, Carlo died just a few months later, leaving the rest of us
a large pile of notes about his work on this, particularly on
infinite abelian groups and profinite groups.
We invited Claudio Quadrelli to help, and produced a second
paper on the topic, currenly in press at the Israel Journal of
Mathematics.
Now we feel it is time to turn to the more general problem of
inverse group theory.
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Inverse group theory

The general problem is this. There are many group-theoretic
constructions. If F is some construction, so that given a group
H it produces a group F (H), we can ask:

▶ Which groups G arise as F (H) for some group H?
▶ What can be said about all such H, for some fixed G?

As we have seen, the problem is completely solved for the
Frattini subgroup of a finite group. But for the derived group,
we do not even know whether it is decidable!
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Trivial cases

The difficulty of such problems is very variable. At one end are
trivial cases, including the following.

▶ The centre of any group is abelian. But every abelian
group is the centre of some group (namely, itself).

▶ The Fitting subgroup of any finite group is nilpotent. But
every finite nilpotent group is the Fitting subgroup of
some group (namely, itself).

▶ The derived quotient of any group is abelian. But every
abelian group is the derived quotient of some group
(namely, itself).

These examples require no further comment. In the rest of the
talk I describe a small selection of more interesting cases.
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Schur multiplier

Recall that the Schur multiplier M(G) of the finite group G is
the (unique) largest abelian group Z for which there exists a
group H with Z ≤ Z(H) ∩ H′ and H/Z ∼= G. There are of
course many other definitions.

Theorem
Every finite abelian group is the Schur multiplier of a finite group.

Proof.
A theorem of Schur says that

M(G × H) = M(G)× M(H)× (G ⊗ H).

Now G ⊗ H vanishes if G and H are perfect, so it is enough to
realise arbitrary cyclic groups as Schur multipliers of perfect
groups. Now Cn is the Schur multiplier of PSL(n, p) if p ≡ 1
(mod n) with a few small exceptions; and Dirichlet’s theorem
guarantees infinitely many such primes p.
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Derangements

Jordan showed in 1872 that, if G is a transitive permutation
group on a finite set of size n, then G contains a derangement.
The subgroup D(G) generated by the derangements in G
contains every element for which the number of fixed points is
not 1.

Question
Which finite groups occur as G/D(G) for some transitive group G?
Rosemary Bailey, Michael Giudici, Gordon Royle and I looked
at this question. If G is a Frobenius group, then D(G) is the
Frobenius kernel, and the derangement quotient G/D(G) is
isomorphic to the Frobenius complement.
Frobenius complements have a very restricted structure, as
shown by Zassenhaus in the 1930s. We did find others: the
Klein group V4 and the alternating groups A4 and A5; these are
derangement quotients of groups of degrees 54, 234 and 594

respectively.
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Varieties

If V is a variety of groups (a collection closed under quotients,
subgroups and Cartesian products), then the collection of
integrals of groups in V is also a variety; in fact, it is the
product variety VA, where A is the variety of abelian groups.

More generally, if W is a set of group words, then we call H a
verbal inverse of G (with respect to W) if G is generated by
evaluations of words of W in H. The class of verbal inverses of
groups in V with respect to W is a variety.
Also, if G has a verbal inverse, then it has a finitely generated
verbal inverse.
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Multiple conditions

I will give a nontrivial example of what we have in mind here.

Theorem
Let A and B be finite abelian groups. Then there is a finite group G
such that Z(G) ∼= A and G/G′ ∼= B.
The obvious generalisation would be the following:

Question
Let V be a variety of groups, and A and B finite groups in V. Is there
a group whose V-marginal subgroup is A and whose V-verbal
quotient is B?
This fails for the variety of nilpotent groups of class 2. Perhaps
it is true only for abelian varieties.
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An inverse inverse problem

Eick’s theorem asserts that G is an inverse Frattini group if and
only if Inn(G) ≤ Φ(Aut(G).

Question
For which group constructions F is it the case that
Inn(G) ≤ F (Aut(G)) is a necessary condition for a solution to the
inverse F -problem for G?

Proposition

A sufficient condition for the above is that the following both hold:
(a) F is monotonic (that is, A ≤ B implies F (A) ≤ F (B));
(b) if B is a normal subgroup of A then F (A/B) = F (A)B/B.

Note that this proposition does not cover the Frattini subgroup.
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A sufficient condition for the above is that the following both hold:
(a) F is monotonic (that is, A ≤ B implies F (A) ≤ F (B));

(b) if B is a normal subgroup of A then F (A/B) = F (A)B/B.

Note that this proposition does not cover the Frattini subgroup.



An inverse inverse problem

Eick’s theorem asserts that G is an inverse Frattini group if and
only if Inn(G) ≤ Φ(Aut(G).

Question
For which group constructions F is it the case that
Inn(G) ≤ F (Aut(G)) is a necessary condition for a solution to the
inverse F -problem for G?

Proposition

A sufficient condition for the above is that the following both hold:
(a) F is monotonic (that is, A ≤ B implies F (A) ≤ F (B));
(b) if B is a normal subgroup of A then F (A/B) = F (A)B/B.

Note that this proposition does not cover the Frattini subgroup.



An inverse inverse problem

Eick’s theorem asserts that G is an inverse Frattini group if and
only if Inn(G) ≤ Φ(Aut(G).

Question
For which group constructions F is it the case that
Inn(G) ≤ F (Aut(G)) is a necessary condition for a solution to the
inverse F -problem for G?

Proposition

A sufficient condition for the above is that the following both hold:
(a) F is monotonic (that is, A ≤ B implies F (A) ≤ F (B));
(b) if B is a normal subgroup of A then F (A/B) = F (A)B/B.

Note that this proposition does not cover the Frattini subgroup.



An inverse maximal subgroup problem

A very important part of finite group theory is the problem of
finding all maximal subgoups of some interesting group.

As an inverse problem, David Craven, Hamid Reza Dorbidi,
Scott Harper and Benjamin Sambale and I considered the
problem: Given a finite set F of finite groups, find all groups
which are minimal with respect to containing all the groups in
F .
In a long paper on the arXiv, we have a number of results on
this question. Here is an unsolved problem.

Question
Find good upper and lower bounds for the smallest order of a group
which contains every group of order pm.

Our bounds, roughly pcm2
and ppm

, are a long way apart!
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Cauchy numbers
Out of the investigation came a nice problem which we were
able to solve.

We say that the number n is a Cauchy number if there is a finite
list F of finite groups with the property that a finite group G
has order divisible by n if and only if some group in F is
embeddable in G.
Cauchy’s theorem asserts that a prime p is a Cauchy number,
with F = {Cp}.

Theorem
The Cauchy numbers n are the following:
▶ prime powers;
▶ n = 6;
▶ n = 2pa where p is a Fermat prime greater than 3 and a is a

positive integer.

For example, a group G has order divisible by 6 if and only if it
embeds one of the groups C6, S3, and A4.



Cauchy numbers
Out of the investigation came a nice problem which we were
able to solve.
We say that the number n is a Cauchy number if there is a finite
list F of finite groups with the property that a finite group G
has order divisible by n if and only if some group in F is
embeddable in G.

Cauchy’s theorem asserts that a prime p is a Cauchy number,
with F = {Cp}.

Theorem
The Cauchy numbers n are the following:
▶ prime powers;
▶ n = 6;
▶ n = 2pa where p is a Fermat prime greater than 3 and a is a

positive integer.

For example, a group G has order divisible by 6 if and only if it
embeds one of the groups C6, S3, and A4.



Cauchy numbers
Out of the investigation came a nice problem which we were
able to solve.
We say that the number n is a Cauchy number if there is a finite
list F of finite groups with the property that a finite group G
has order divisible by n if and only if some group in F is
embeddable in G.
Cauchy’s theorem asserts that a prime p is a Cauchy number,
with F = {Cp}.

Theorem
The Cauchy numbers n are the following:
▶ prime powers;
▶ n = 6;
▶ n = 2pa where p is a Fermat prime greater than 3 and a is a

positive integer.

For example, a group G has order divisible by 6 if and only if it
embeds one of the groups C6, S3, and A4.



Cauchy numbers
Out of the investigation came a nice problem which we were
able to solve.
We say that the number n is a Cauchy number if there is a finite
list F of finite groups with the property that a finite group G
has order divisible by n if and only if some group in F is
embeddable in G.
Cauchy’s theorem asserts that a prime p is a Cauchy number,
with F = {Cp}.

Theorem
The Cauchy numbers n are the following:

▶ prime powers;
▶ n = 6;
▶ n = 2pa where p is a Fermat prime greater than 3 and a is a

positive integer.

For example, a group G has order divisible by 6 if and only if it
embeds one of the groups C6, S3, and A4.



Cauchy numbers
Out of the investigation came a nice problem which we were
able to solve.
We say that the number n is a Cauchy number if there is a finite
list F of finite groups with the property that a finite group G
has order divisible by n if and only if some group in F is
embeddable in G.
Cauchy’s theorem asserts that a prime p is a Cauchy number,
with F = {Cp}.

Theorem
The Cauchy numbers n are the following:
▶ prime powers;

▶ n = 6;
▶ n = 2pa where p is a Fermat prime greater than 3 and a is a

positive integer.

For example, a group G has order divisible by 6 if and only if it
embeds one of the groups C6, S3, and A4.



Cauchy numbers
Out of the investigation came a nice problem which we were
able to solve.
We say that the number n is a Cauchy number if there is a finite
list F of finite groups with the property that a finite group G
has order divisible by n if and only if some group in F is
embeddable in G.
Cauchy’s theorem asserts that a prime p is a Cauchy number,
with F = {Cp}.

Theorem
The Cauchy numbers n are the following:
▶ prime powers;
▶ n = 6;

▶ n = 2pa where p is a Fermat prime greater than 3 and a is a
positive integer.

For example, a group G has order divisible by 6 if and only if it
embeds one of the groups C6, S3, and A4.



Cauchy numbers
Out of the investigation came a nice problem which we were
able to solve.
We say that the number n is a Cauchy number if there is a finite
list F of finite groups with the property that a finite group G
has order divisible by n if and only if some group in F is
embeddable in G.
Cauchy’s theorem asserts that a prime p is a Cauchy number,
with F = {Cp}.

Theorem
The Cauchy numbers n are the following:
▶ prime powers;
▶ n = 6;
▶ n = 2pa where p is a Fermat prime greater than 3 and a is a

positive integer.

For example, a group G has order divisible by 6 if and only if it
embeds one of the groups C6, S3, and A4.



Cauchy numbers
Out of the investigation came a nice problem which we were
able to solve.
We say that the number n is a Cauchy number if there is a finite
list F of finite groups with the property that a finite group G
has order divisible by n if and only if some group in F is
embeddable in G.
Cauchy’s theorem asserts that a prime p is a Cauchy number,
with F = {Cp}.

Theorem
The Cauchy numbers n are the following:
▶ prime powers;
▶ n = 6;
▶ n = 2pa where p is a Fermat prime greater than 3 and a is a

positive integer.

For example, a group G has order divisible by 6 if and only if it
embeds one of the groups C6, S3, and A4.



But that is the end of my story.

. . . for your attention.
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