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mathematics, in both group theory and game theory, and also
contributed to the Campaign for Better Transport.
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His most memorable mathematical work was done in close
association with John Conway. It is no surprise that both their
biographers use the word “genius” to describe their subjects:
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Conway and Norton

But look more closely at the covers:

Conway was playful, indeed some felt that he did little but
play. I am not sure whether Norton ever played, but he took
very great pleasure in what he did; I think Masters is right to
describe him as a happy man.



Groups

Much of Norton’s best work concerned the “Monster” simple
group. Nobody knew his way around the Monster like Simon
Norton.

So I will begin by a brief account of groups. These are
mathematical objects which “measure symmetry”; more
precisely, they describe transformations of an object into itself.
Here is an object which may be familiar, the Rubik cube:
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A move consists of turning one of the six “faces” (made up of
nine small cubes) through a quarter, half, or three-quarter turn.
After a few moves the colours will seem thoroughly mixed up;
indeed, the number of different configurations is
218963266577104896000. (We call this large number the order of
the group associated with the cube.)

This is a big number! Yet there are people who can “solve” the
cube (return it to its original configuration) in a few seconds.
This is testimony to their insight into the structure of the group,
but also to the efficiency of the algorithms for handling groups,
and to a special feature of this group, which I now discuss.



A move consists of turning one of the six “faces” (made up of
nine small cubes) through a quarter, half, or three-quarter turn.
After a few moves the colours will seem thoroughly mixed up;
indeed, the number of different configurations is
218963266577104896000. (We call this large number the order of
the group associated with the cube.)
This is a big number! Yet there are people who can “solve” the
cube (return it to its original configuration) in a few seconds.
This is testimony to their insight into the structure of the group,
but also to the efficiency of the algorithms for handling groups,
and to a special feature of this group, which I now discuss.



When I was first given a Rubik cube, I devised a method of
solving it, not very fast but it worked:
I first move the corner cubes to their correct positions (the

centres of the faces don’t move, and give us a reference
frame: thus, with the face centres as shown, we know that
the cube near us must be red-yellow-blue).

I then rotate the cubes if they are not in the right orientation;
I then move the edge cubes to their correct positions;
I finally flip them over if necessary.

At each stage, we have to do the task without spoiling the work
which has already been done.
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Simple groups

This procedure works because the group of the Rubik cube can
be “broken down” to smaller groups which are much easier to
handle.

A group which cannot be broken down in this way is called
simple. The simple groups are the “atoms” of group theory.
In the 1960s, we knew several infinite families of simple
groups, but there were just five “oddities” called sporadic
groups which don’t fit into any infinite pattern. Then all of a
sudden, new sporadic groups started popping up all over the
place. The largest of these was the Monster, a group of order
808017424794512875886459904961710757005754368000000000.
This is much larger than the order of the Rubik cube group, but
the difficulty of understanding it is compounded by the fact
that it cannot be broken down into smaller groups, but has to
be tackled head-on.
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The Monster

The Monster had been discovered, in the sense that evidence
for its existence had been found, by Bernd Fischer and Bob
Griess, though it would be another three years before Griess
constructed it.

Incidentally, Griess proposed calling the group the Friendly
Giant, or FG (for Fischer–Griess), following the naming
convention for most of the other sporadic simple groups; but
Conway’s name for it (the Monster) prevailed.
Indeed, Conway and Norton played an important role in the
story.
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The ATLAS of Finite Groups
Most finite group theorists make extensive use of the ATLAS

of Finite Groups, a compendium of information about many
groups.

The (apocryphal) rules for authorship are well known: You
must have two initials; your surname must have six letters with
vowels in positions 2 and 5.
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Simon left us just 30 publications. The ATLAS of Finite
Groups has been cited 3857 times, according to Semantic
Scholar.
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What a wonderful title for a mathematics paper!

Part of the moonshine conjectures asserted that the three
equations on my cover slide, namely

were just the first of an infinite sequence of equations.
What is remarkable about these equations is that the left-hand
sides are the Fourier coefficients of the classical modular
function or j-function, whereas the right-hand sides are linear
combinations of irreducible character degrees of the Monster.



What a wonderful title for a mathematics paper!
Part of the moonshine conjectures asserted that the three
equations on my cover slide, namely

were just the first of an infinite sequence of equations.

What is remarkable about these equations is that the left-hand
sides are the Fourier coefficients of the classical modular
function or j-function, whereas the right-hand sides are linear
combinations of irreducible character degrees of the Monster.



What a wonderful title for a mathematics paper!
Part of the moonshine conjectures asserted that the three
equations on my cover slide, namely

were just the first of an infinite sequence of equations.
What is remarkable about these equations is that the left-hand
sides are the Fourier coefficients of the classical modular
function or j-function, whereas the right-hand sides are linear
combinations of irreducible character degrees of the Monster.



The two sides of the Moonshine equations come from
completely different branches of mathematics: the first is
classic 19th century stuff (found in old analysis books); the
second has been described as “21st century mathematics which
fell into our laps in the 20th” (the numbers on the right are in
the ATLAS).

The initial observation is due to John McKay, one of the few
people who knew enough about both topics to recognise this.
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To prove, to conjecture, to observe . . . 1

Conway’s later student Richard Borcherds proved this infinite
set of equations: some serious magic with Lie algebras allowed
him to reduce the problem to just four verifications.
The Moonshine paper is full of observations, some of which are
proved, and some lead to conjectures.
Conway’s later view was that Borcherds had proved the
conjecture but not explained it. Borcherds used ideas from
physics (conformal field theory), and there was a feeling at the
time that aspects of the Theory of Everything were contained in
the Monster.
The paper contained things which are still unexplained. For
example, the constant term of the j-function is 744, which
doesn’t fit the Moonshine pattern; but Conway and Norton
point out that it is three times the dimension of the largest
exceptional simple Lie algebra E8. (Another remarkable
coincidence, whose significance still eludes us.)

1The purpose of life is to prove and to conjecture – Paul Erdős
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Norton and the Monster

So how did Norton understand the Monster? Nobody knows,
but I will make a couple of speculations.

There are two tools which are indispensible for understanding
a large group: knowledge of the subgroups, and knowledge of
the representations of the group by matrices.
The information for the second of these is summarised in the
character table of the group; in the case of the Monster, this is a
square array of size 194 × 194, much smaller than its
multiplication table! This table was computed in the late 1970s
by Fischer, Livingstone and Thorne, and Norton knew it very
well indeed. The first column contains the numbers on the
right in the Moonshine equations.
The usual approach to understanding the subgroups of a group
involve knowing the maximal subgroups and working down.
But in the Monster there are certain small subgroups from
which we can build up. Norton’s papers on the anatomy of the
Monster showed deep and detailed knowledge of these.
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Later . . .

Britain has a long tradition of cherishing eccentrics, people who
are at some distance from the societal norm and yet make huge
contributions to something. Simon Norton fits this description
rather well.

But he was not good at explaining his intuitions to others.
Cambridge University felt that they could not put him up to
lecture to a class of students, and in 1985 they did not renew his
contract. (Ironically, “research assessment” was just gearing up,
and he might have been valuable to the university in that
context.)
This, and the departure of John Conway to Princeton in 1986,
marked the end of the high point of Norton’s creativity. He
continued to investigate the Monster, but spent more time on
other interests, in particular public transport. (He was a strong
supporter of this, contributing to campaigns to save bus routes,
and making elaborately planned trips around Britain based on
his deep knowledge of local bus timetables.)
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A digression

Mathematically, a football consists of 60 points marked on the
surface of a sphere, with the lines joining them forming 12
pentagons and 20 hexagons. This is an example of a
polyhedron (not one of the five regular polyhedra found by the
ancient Greeks, but an important one anyway).
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Your friendly neighbourhood chemist will probably tell you
that it is a molecule of a form of carbon, with chemical formula
C60, which they call buckminsterfullerene, since it resemebles
one of Buckminster Fuller’s geodesic domes.
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Roundness

The point about a football is that it is round, so that it rolls well.
Imagine, if you can, playing football with a ball that had a lead
weight attached at some point inside, or with one of the
pentagons very much bigger than all the others. It would be
quite a different game!

A measure of “roundness” for a finite set of points on a sphere
was devised by Philippe Delsarte, Jean-Marie Goethals and
Jaap Seidel. They defined the notion of a spherical t-design,
where t is a positive integer; the larger t, the more “round” the
set of points is.
To begin, imagine that we put a unit mass at each point of the
set. There will be a centre of mass, which is found by averaging
the coordinates of the points. We would like this to be at the
origin, otherwise the set will be eccentric (like a bowling ball),
and not suitable as a football.
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Another way of saying this is that any linear function sums to
zero over the points of the set. So the average of a linear
function over a finite set is equal to its average over the whole
sphere.

The next condition would say that the same holds for a
quadratic function. In terms of mechanics, this would say that
the inertia ellipsoid of the point set is a sphere.
Delsarte, Goethals and Seidel say that a finite set on the sphere
is a spherical t-design if, for any polynomial function of degree
at most t, its average over the point set is equal to its average
over the whole sphere. So the two conditions above define
spherical 1- and 2-designs.
This is useful in numerical integration. The integral of a
function over the sphere can be approximated by its sum over a
finite point set (suitably normalised); if the set is a spherical
t-design then the approximation gives the exact value for
polynomial functions of degree at most t.
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The electron is round

I can’t resist mentioning an analogous result from physics.

A 2011 paper by J. J. Hudson et al. in Nature shows that the
electron is round (in other words, its electric dipole moment is
zero) to a very high degree of accuracy.
This beautifully designed experiment, using classical
techniques from design of experiments in a very clever way, is
significant for another reason. A deviation from roundness of
the electron would potentially allow various consequences of
supersymmetry to exist in the universe; perfect roundness
would rule them out.
This experiment didn’t require a multi-billion dollar particle
accelerator, but was done with tabletop equipment in the
laboratory!
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A better football?

In a short paper in the Nieuw Archief voor Wiskunde, Goethals
and Seidel showed that the football is a spherical 5-design; but
a very small adjustment (making the pentagons slightly larger
and the hexagons slightly irregular) gives a spherical 9-design.

The real test of this would be to make such an “improved”
football and ask professional footballers to test it out. As far as I
know, this has not been done.
The calculations involve mathematics from the nineteenth
century, namely invariant theory of the icosahedral group. The
vertices of the “improved” football are zeros of the invariant of
degree 6 for this group.
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In 1978, Goethals, Seidel and I published a paper giving the
name Norton algebras to certain commutative but
non-associative algebras which had been used by Simon
Norton to study 3-transposition groups, including several
sporadic simple groups discovered by Bernd Fischer.

Our reference for the attribution was “personal communication
from J. H. Conway”.
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Norton algebras and spherical designs

It turned out that a fascinating situation arises: a natural
construction of symmetric point sets as group orbits in a real
vector space gives rise to a Norton algebra if and only if it is not
a spherical 3-design!

I cannot explain this in detail but will give a rough idea with
minimum technical detail.
Suppose that a finite group G acts irreducibly by orthogonal
transformations on a real vector space V. Let S be a (finite) orbit
of G. From general considerations, we can see that S is always a
spherical 2-design.
Now consider the action of G on V ⊗ V. This can be
decomposed as a sum of irreducible representations. We ask,

Does V ⊗ V have an irreducible constituent which is iso-
morphic to V?
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The dilemma

The answer can be found by a calculation from the character
table of G.

If the answer is “no”, then a fairly simple argument shows that
V is a spherical 3-design.
If it is “yes”, then there is a G-invariant map from V ⊗ V to V.
This is a binary operation of “multiplication” or “composition”
on V, and this is what we called a Norton algebra.
I will try to give a handwaving explanation. A perfectly
smooth sphere offers no handholds. But if the object departs
from roundness in some way, we can perhaps get a grip on it
and come to an understanding of it. This was essentially what
happened.
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The Griess algebra

The Monster (not yet constructed, at this point in the story) has
a smallest nontrivial irreducible representation whose degree is
196883 (the number appearing in the first Moonshine equation).

In it, we can identify points corresponding to the 2A
involutions in the Monster.
From the character table we can identify that the “yes”
alternative to our question holds, so we have a Norton algebra
on this space.
Griess gave a direct construction of this algebra and showed
that its full automorphism group had the properties required to
identify it with the Monster.
This algebra has been crucial to further study of the Monster,
for example in the proof of the Moonshine conjectures by
Richard Borcherds, and the work of Sasha Ivanov and
colleagues on Majorana algebras.
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But that is the end of my story.

. . . for your attention.


