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About me

I was born (in Paul Erdös’ sense) more than 50 years ago, and
have been in universities ever since, although they are putting
me out to grass next year.

I am currently at St Andrews, the third oldest university in the
anglophone world (founded in 1413), in a town which is also
the birthplace of golf.
All my career I have enjoyed groups and graphs. In 2021,
Ambat Vijayakumar from CUSAT in Kochi, Kerala (“God’s
own country”) invited me in 2021 to lead an on-line research
discussion on graphs on groups.

The next issue of the LMS Newsletter will have an article giving
more detail on the project.
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Graphs on groups

The most famous graphs on groups are Cayley graphs, but I
will talk about something a bit different.

The prototype is the commuting graph of a group G: it has
vertex set G, and vertices x and y are joined if and only if they
commute (that is, xy = yx).
This graph was used by Brauer and Fowler in a very important
paper in 1955, perhaps the first step to the Classification of
Finite Simple Groups. They showed that there are only finitely
many simple groups (of even order) containing a prescribed
involution centraliser.
However, back in the dark ages of 1955, graph theory was not
really a subject, so the word “graph” does not occur in their
paper.
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A couple more graphs

There are large numbers of different graphs defined on groups
(where edges depend on some group-theoretic condition). I
will just introduce a couple more. But there is an enormous
unexplored field here!

The power graph has x and y joined if one is a power of the
other.
You will see that it should really be a directed graph, with an
arc x→ y if y is a power of x; but it is known that the power
graph determines the directed power graph up to
isomorphism.
The enhanced power graph, or cyclic graph, has x and y joined
if there exists z such that both x and y are powers of z. Thus,
x ∼ y if the group generated by x and y is cyclic.
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A hierarchy

Note that the power graph is a spanning subgraph of the
enhanced power graph, which is a spanning subgraph of the
commuting graph.

For future use, note that it appears that the power graph and
enhanced power graph are fairly close to one another.
For example, with V. V. Swathi and M. S. Sunitha, I showed that
these two graphs have the same matching number. The proof is
a standard alternating chains argument.
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The aims of the project

I have three main aims in this project:

I We can define interesting classes of groups, either by
requring a particular graph to belong to an important
graph class (e.g. perfect graphs, chordal graphs), or by
requiring two of the graphs to coincide (an example of this
coming up soon).

I We can prove new theorems about groups by using these
graphs (as Brauer and Fowler famously did with the
commuting graph).

I We might find interesting graphs (that is my main subject
in this talk).

There is also a lot of work in particular graphs defined on
particular groups, calculating their properties (chromatic
number, spectrum, etc.) But I am not so interested in this.



The aims of the project

I have three main aims in this project:
I We can define interesting classes of groups, either by

requring a particular graph to belong to an important
graph class (e.g. perfect graphs, chordal graphs), or by
requiring two of the graphs to coincide (an example of this
coming up soon).

I We can prove new theorems about groups by using these
graphs (as Brauer and Fowler famously did with the
commuting graph).

I We might find interesting graphs (that is my main subject
in this talk).

There is also a lot of work in particular graphs defined on
particular groups, calculating their properties (chromatic
number, spectrum, etc.) But I am not so interested in this.



The aims of the project

I have three main aims in this project:
I We can define interesting classes of groups, either by

requring a particular graph to belong to an important
graph class (e.g. perfect graphs, chordal graphs), or by
requiring two of the graphs to coincide (an example of this
coming up soon).

I We can prove new theorems about groups by using these
graphs (as Brauer and Fowler famously did with the
commuting graph).

I We might find interesting graphs (that is my main subject
in this talk).

There is also a lot of work in particular graphs defined on
particular groups, calculating their properties (chromatic
number, spectrum, etc.) But I am not so interested in this.



The aims of the project

I have three main aims in this project:
I We can define interesting classes of groups, either by

requring a particular graph to belong to an important
graph class (e.g. perfect graphs, chordal graphs), or by
requiring two of the graphs to coincide (an example of this
coming up soon).

I We can prove new theorems about groups by using these
graphs (as Brauer and Fowler famously did with the
commuting graph).

I We might find interesting graphs (that is my main subject
in this talk).

There is also a lot of work in particular graphs defined on
particular groups, calculating their properties (chromatic
number, spectrum, etc.) But I am not so interested in this.



The aims of the project

I have three main aims in this project:
I We can define interesting classes of groups, either by

requring a particular graph to belong to an important
graph class (e.g. perfect graphs, chordal graphs), or by
requiring two of the graphs to coincide (an example of this
coming up soon).

I We can prove new theorems about groups by using these
graphs (as Brauer and Fowler famously did with the
commuting graph).

I We might find interesting graphs (that is my main subject
in this talk).

There is also a lot of work in particular graphs defined on
particular groups, calculating their properties (chromatic
number, spectrum, etc.) But I am not so interested in this.



A graph-defined class of groups

Which groups have the property that the power graph and
enhanced power graph coincide?

These are just the groups in which all elements have prime
power order. (If x has order pq, where p and q are distinct
primes, then xp and xq are joined in the enhanced power graph
but not in the power graph. The converse is similar.)
These groups were studied by Higman in the 1950s (who
determined the solvable ones) and Suzuki in the 1960s (who
found the simple ones). The complete classification was given
in a little-known paper by Brandl in 1981, not using the
Classification of Finite Simple Groups.
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What makes a graph interesting?

Different people will give different answers to this question. As
a group theorist, I prefer my graphs to have lots of symmetry.
But there are other things one might ask for: various kinds of
regularity such as distance-regularity; large girth for the
number of vertices and edges; etc.

A few years ago, my colleague Colva Roney-Dougal and I were
looking at the generating graph (two elements joined if they
generate the group) for the alternating group A5 of order 60
(the smallest non-abelian simple group). We asked the
computer for the order of its automorphism group: the answer
shocked us, it was 23482733690880.
Had we used the commuting graph instead, things would have
been even worse: its automorphism group has order
477090132393463570759680000.
What is going on?
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Enter the lotus

A lotus flower is a flower of exuberant beauty, but it quickly
loses its petals to leave something more austere.
Just occasionally, legend has it, you find a jewel in the heart of
the flower, which remains when the wind has blown the petals
away.
That is what I have been looking for.
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Twins

It turns out that these guys are the villains!

Two vertices x, y in a graph are twins if they have the same
neighbours, except possibly for one another.
So there are two kinds of twins: open twins (x not joined to y,
same open neighbourhoods) and closed twins (x joined to y,
same closed neighbourhoods).
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Twins and automorphisms

Graphs on groups tend to have many pairs of twins: if x and y
generate the same cyclic subgroup, they are twins in every
naturally defined graph on the group.

Being twins is an equivalence relation, and all pairs in an
equivalence class are the same kind of twins.
So any permutation of an equivalence class, fixing everything
else in the graph, is an automorphism. This is why graphs on
groups tend to have very large automorphism groups.
But these are not interesting automorphisms!
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Twin reduction

One step of twin reduction involves choosing a pair of twins
and identifying them (or, equivalently, deleting one).

The problem then is that in the process we may create new
twins:

r rHH
H
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r rr r r r r

But it is not hard to show that, if we continue until no further
twins remain, the graph we get is (up to isomorphism)
independent of the reduction process.
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Cographs

A graph Γ is a cograph it it has any one of the following
equivalent properties:

I Γ contains no induced 4-vertex path;
I Γ can be built from 1-vertex graphs by the operations of

disjoint union and complementation;
I every induced subgraph of Γ is either disconnected or has

disconnected complement;
I twin reduction applied to Γ terminates with a 1-vertex

graph.
This class of graphs has been rediscovered many times, and
given several different names.
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The experiment

This is joint work with Sucharita Biswas, Angsuman Das and
Hiranya Kishore Dey.

In the search for interesting graphs, we decided on two
principles:

I We would start with simple (or sometimes almost simple)
groups.

I In order to get fairly sparse graphs, we would use the
difference graph, whose edges are those of the enhanced
power graph which are not in the power graph.

Here are some of the things we found. The first few were
expected.
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Case 1

The first possibility is that we have chosen a group whose
power graph and enhanced power graph are equal, so that the
difference graph is null.

From the work of Suzuki, it is known that the only simple
groups with this property are

I PSL(2, q), for q = 4, 7, 8, 9, 17;
I Sz(q), for q = 8, 32;
I PSL(3, 4).

Nothing further to say about these.
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Case 2

The next case occus when the difference graph of G is a
cograph, so that twin reduction yields a graph with just one
vertex.

From work with Pallabi Manna and Ranjit Mehatari, the simple
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These conditions hold for q = 2d where d = 1, 2, 3, 4, 5, 7, 11, 13,
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Case 3

The third case which we found, for which we have no good
explanation, is the case when twin reduction gives a large
number of isomorphic small connected components.

For example, for the groups PSL(2, q) for q = 23 and 25, the
components are K5 − P4, and the number of them is 253 or 325
respectively.
In particular, it is a mystery why these two groups give
isomorphic connected components.
But in any case, we take the view that in these cases twin
reduction has not been sufficient to blow the rubbish away.
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Case 4

In the fourth case, we get just one connected component, which
is a graph whose automorphism group is the same as the
automorphism group of the simple group we started off with,
and which typically has large girth.

Our best example is the Mathieu group M11, where the graph
has the following properties:

I It is bipartite, with classes of size 165 and 220.
I It is semiregular, the vertices in the two classes having

valency 4 and 3 respectively.
I It has diameter 10 and girth 10.
I Its automorphism group is M11.
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Another example

For the group PSL(3, 3), we get the case q = 3 of a general
construction, which to my knowledge has not been
investigated by finite geometers. We commend it to them.

I It has (q2 + q + 1)2 vertices, identified with the point-line
pairs in the projective plane over the field of q elements.

I It is bipartite, the bipartite blocks corresponding to the two
types of pairs, viz. flags (incident pairs) and antiflags
(non-incident pairs).

I The flag (P, L) and antiflag (Q, M) are adjacent if Q ∈ L
and P ∈ M.

r r
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��

P
L

Q

M

I It is semiregular, with valencies q2 and q + 1 in the two
blocks.
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That’s not all

Further kinds of behaviour can happen.

For example, the Mathieu group M12 gives a graph with two
components, one on 1375 and the other on 2112 vertices, each
with automorphism group Aut(M12).
Allowing almost simple groups, we find for example the
symmetric group S7, where we have one component with 322
vertices and seven with 35 vertices.
We really need to understand twin reduction better, especially
in graphs on groups.
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What next?

There is plenty more to explore; other types of graphs, other
types of groups, etc. If you are interested in this, please try
your hand. Here are some references:

I Sucharita Biswas, Peter J. Cameron, Angsuman Das and
Hiranya Kishore Dey, On difference of enhanced power graph
and power graph in a finite group, J. Combinatorial Theory (A),
208 (2024), 105932; ; doi: 10.1016/j.jcta.2024.105932

I Peter J. Cameron, Graphs defined on groups, Internat. J. Group
Theory 11 (2022), 43–124; doi:
10.22108/ijgt.2021.127679.1681

I Peter J. Cameron, Pallabi Manna and Ranjit Mehatari, On finite
groups whose power graph is a cograph, J. Algebra 591 (2022),
59–74; doi: 10.1016/j.jalgebra.2021.09.034

I Peter J. Cameron, V. V. Swathi and M. S. Sunitha, Matching in
power graphs of finite groups, Annals of Combinatorics 26 (2022),
379–391; doi: 10.1007/s00026-022-00576-5
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. . . for your attention.


