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Graphs and algebra

Algebra is made up of two main branches:
▶ linear algebra (matrices, eigenvalues, etc.), and

▶ abstract algebra (groups, rings, categories, universal
algebra).

So algebraic graph theory is made up of two main areas:
▶ the adjacency matrix and variants, including strongly

regular and distance-regular graphs, expander graphs,
Ramanujan graphs, etc.; and

▶ the automorphism group, endomorphism monoid, or
graphs built from groups such as Cayley graphs.

I will talk mostly about the second of these topics.
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Graphs and groups

Groups measure symmetry; they are highly structured, elegant
objects. But graphs are “wild”: we can put in edges however
we please. Some graphs are beautiful, but most are scruffy.
Nevertheless, they have a lot to say to one another.

We would expect to find that graphs associated with algebraic
structures are less scruffy than general graphs. Later I will
show you some examples of beautiful graphs from groups.
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Summary

It is not possible to cover every interaction between graphs and
groups. I will talk about three topics:

▶ Cayley graphs;
▶ Graphs used to construct groups;
▶ Graphs built on groups reflecting the group structure.

I will spend most time on the third topic, where my current
interest lies. But you should be aware that Cayley graphs
represent the largest and most significant of the three topics.
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Cayley graphs

Arthur Cayley showed that every group is isomorphic to a
group of permutations.

Before the latter part of the nineteenth century, the word
“group” was synomymous with “permutation group” or
“transformation group”. One of these is a set G of permutations
of a domain V, which is closed under composition and
inversion and contains the identity.
When the axioms for a group were written down by Dyck in
the later part of the nineteenth century, group theory was a
hundred years old. So that the researches of Galois, Cauchy,
Jordan and others should not be lost, it was necessary to show
that the two concepts agree. Any transformation group satisfies
the group axioms (composition of mappings is always
associative, and the other three axioms are required by the
definition). So it remained to show that every “abstract” group
can be represented as a permutation group, and this is what
Cayley did.
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Cayley’s theorem
Given an abstract group G (a structure satisfying the group
axioms), Cayley builds a permutation group as follows. The
domain V is just the set G. For each g ∈ G, define a map
πg : V → V by the rule

xπg = (xg),

where the right hand side is the product in the group. (You will
see that I write permutations on the right.)

Now the equation

xπgπh = (xg)πh = (xg)h = x(gh) = xπgh

shows that πgπh = πgh (where on the left the operation is
composition). This shows that the map ϕ : g 7→ πg is an
isomorphism from G to a permutation group on G.
Note the use of the associative law here: Cayley’s theorem
applies only to structures with associative operation
(semigroups, monoids and groups).
The map ϕ is the regular representation of G.
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But we can do more with this construction.

If S is a subset of G, we can define a directed graph on G by the
rule that there is an arc from x to y whenever y = sx for some
s ∈ S. This is the Cayley digraph Cay(G, S).
Now, if x → y, say y = sx, then for any g ∈ G,

yπg = (sx)g = s(xg) = s(xπg),

so xπg → yπg, and the map πg is an automorphism of the
graph.
So any Cayley digraph admits the regular representation of G
as a group of automorphisms.
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Generalities

A few things about Cayley graphs and digraphs:

▶ Cay(G, S) is regular (since it admits a vertex-transitive
group of automorphisms).

▶ Cay(G, S) is connected if and only if S generates G. For a
path starting at the identity with edges labelled s1, s2, . . . , sk
has end vertex sk · · · s2s1.

▶ Cay(G, S) has a loop at every vertex if 1 ∈ S, and has no
loops if 1 /∈ S.

▶ Cay(G, S) is an undirected graph if s ∈ S ⇒ s−1 ∈ S.
▶ Cay(G, S) is an oriented graph if s ∈ S ⇒ s−1 /∈ S.
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Graphical regular representations

Much of the interest in finite Cayley graphs has been in the
question:

Which groups G have Cayley graphs Cay(G, S) (for some S)
such that the automorphism group of Cay(G, S) is precisely
G, and not larger?

Such a Cayley graph is called a graphical regular
representation of G.
It is known that, apart from abelian groups and generalised
dicyclic groups, only finitely many groups fail to have GRRs.
Similar results are known in other cases such as digraphs.
This is about restricting the symmetry of a graph. But I like
symmetry . . .
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Something different

Let G = (C2)4, where the four factors are generated by
e1, e2, e3, e4. Let Γ = Cay(G, S), where S = {e1, e2, e3, e4, e1e2e3e4}.

Then Γ has 16 vertices and has valency 5.
Since there are no solutions of xy = z for x, y, z ∈ S, Γ has no
triangles. Since every element not in S is uniquely the product
of two elements of S, two non-adjacent vertices have two
common neighbours.
Thus Γ is a strongly regular graph.
This is the Clebsch graph (though sometimes this name is given
to the complementary graph).
It has a high degree of symmetry. The stabiliser of a vertex acts
as the symmetric group S5 on its neighbours; the full group is
(C4

2)⋊ S5, of order 1920.
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Strongly regular graphs

A graph Γ is strongly regular, with parameters (n, k, λ, µ), if
▶ Γ has n vertices;

▶ Γ is regular, with valency k;
▶ the number of common neighbours of two distinct vertices

v, w is λ if v and w are joined, µ otherwise.
Thus the Clebsch graph is strongly regular, with parameters
(16, 5, 0, 2).
It is not too hard to show that, up to isomorphism, it is the
unique strongly regular graph with these parameters.
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Algebraic theory
It is not hard to see that the adjacency matrix A of a strongly
regular graph Γ (the matrix with rows and columns indexed by
vertices, with (v, w) entry 1 if v is joined to w and 0 otherwise)
satisfies

A2 = kI + λA + µ(J − I − A),

where J is the all-1 matrix.

The all-1 vector j is an eigenvector with eigenvalue k; so

k2 = k + λk + µ(n − 1 − k),

an equation which can be directly verified by counting.
Any other eigenvector x is orthogonal to j, and so has
eigenvalue θ satisfying

θ2 = k + λθ − µ(1 + θ).

Solving this quadratic and computing the multiplicities of the
eigenvalues gives strong necessary conditions on (n, k, λ, µ).
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After dinner

Throughout the late 1960s and early 1970s, new sporadic
simple groups seemed to pop up all over the place.

In 1968, there was a conference on finite groups in Oxford, at
which Marshall Hall Jr. talked about his construction, with
David Wales, of the second of Janko’s sporadic groups, as the
automorphism group of a strongly regular graph on 100
vertices.
At the conference dinner that night, Donald Higman and
Charles Sims speculated on whether there might be another
simple group acting on a 100-vertex graph. After dinner, they
went off to see what they could come up with. Higman was
familiar with the theory of strongly regular graphs, and knew
where to look. By the end of the evening, they had constructed
their group, using familiar properties of the Witt design, the
Steiner system on 22 points with automorphism group
M22 ⋊ C2.
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The Higman–Sims graph

The construction is simple. The vertices are the 22 points and
77 blocks of the Witt design, and one further vertex ∗. Now ∗ is
joined to all the points; a point and block are joined if they are
incident; and two blocks are joined if they are dsjoint.

Properties of the Witt design show that the graph looks the
same from any vertex; so the automorphism group is
vertex-transitve, and its order is 100 times that of the group of
the Witt design.
This was almost certainly the most painless construction of a
sporadic simple group.
The graph is strongly regular, with parameters (100, 22, 0, 6).
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What we learned later

The theory of strongly regular graphs was developed by
R. C. Bose and his students and collaborators, in the middle
years of the twentieth century.

One of these was Dale Mesner. We later learned that he had
constructed the Higman–Sims graph twelve years earlier. But
he had a bigger struggle, since he didn’t know about the Witt
design; and being a statistician, not a group theorist, he never
thought to investigate the autmorphism group of the graph he
had found.
I suggest that we refer to the graph as the Mesner graph, but
continue to call the group the Higman–Sims group.
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A problem

One of the most fascinating problems on strongly regular
graphs is to explain why there are only seven known strongly
regular graphs with λ = 0 (that is, with no triangles), apart
from the trivial complete bipartite graphs.

The “seven samurai” are:
▶ the 5-cycle, parameters (5, 2, 0, 1);
▶ the Petersen graph, parameters (10, 3, 0, 1);
▶ the Clebsch graph, parameters (16, 6, 0, 2);
▶ the Hoffman–Singleton graph, parameters (50, 7, 0, 1);
▶ the Gewirtz graph, parameters (56, 10, 0, 2);
▶ the block graph of the Witt design, parameters (77, 16, 0, 4);
▶ the Mesner graph, parameters (100, 22, 0, 6).

There is no obvious reason why there can’t be any more, but all
attempts to construct one have so far failed.
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A quick look at the infinite

Cayley graphs are important also for infinite groups.

In the case of finitely generated groups, where we can take the
Cayley graphs to have finite valency, we are in the realm of
geometric group theory. For many groups, “triangles in the
Cayley graph are narrow”: given three points a, b, c, geodesics
from a to b and from b to c do not stray too far from the
geodesic from a to c.

Such groups are called hyperbolic, and feature in the work of
Gromov and many others.
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Random Cayley graphs

What if we allow the connection set to be infinite?

In the 1960s, Erdős and Rényi proved the remarkable result
that, if we take a countable set of vertices, and choose edges at
random (by tossing a coin, say), then there is one particular
graph R which will arise almost surely. This is the Erdős–Rényi
random graph, sometimes called the Rado graph (since Rado
gave the first explicit construction of it).
It is known that for a large class of countably infinite groups G
(including all abelian groups of infinite exponent), if we choose
a random connection set S (by including inverse pairs s, s−1 in S
at the toss of a coin), the graph Cay(G, S) is isomorphic to R. So
R is a Cayley graph for many different groups!
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Some more history

In 1955, Brauer and Fowler wrote a paper which has a good
claim to be the first step on the thousand-mile journey to the
Classification of Finite Simple Groups.

They showed the following. Let S be a finite simple group of
even order. (This was several years before the Feit–Thompson
theorem, so it was not known whether every non-abelian finite
simple group must have even order.) Then S contains an
involution s (an element of order 2).
They showed that, given the structure of the centraliser of S
(the set of elements commuting with S), there are only finitely
many possibilities for S.
Much of the work on the Classification involves determining
all simple groups with a given involution centraliser; indeed,
several sporadic groups were found this way.
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Enter the commuting graph

Their methods were essentially graph-theoretic. Define a graph
Γ with vertex set G, in which g and h are joined if gh = hg. This
is the commuting graph of G.

Brauer and Fowler were interested in bounding its diameter. As
I have defined it, the diameter is 2, since the identity commutes
with all other elements; so they had first to remove the identity.
Having bounded the diameter, they could then bound the
number of vertices, and so the order of the group, proving their
claim.
Curiously, the word “graph” does not occur in their paper;
graph theory was not considered to be a part of mainstream
mathematics back then!
The commuting graph is just the first of a number of graphs
defined on groups, which form the topic I will turn to now.
These include the power graph, enhanced power graph,
nilpotency graph, solubilty graph, Engel graph, and generating
graph.



Enter the commuting graph

Their methods were essentially graph-theoretic. Define a graph
Γ with vertex set G, in which g and h are joined if gh = hg. This
is the commuting graph of G.
Brauer and Fowler were interested in bounding its diameter. As
I have defined it, the diameter is 2, since the identity commutes
with all other elements; so they had first to remove the identity.

Having bounded the diameter, they could then bound the
number of vertices, and so the order of the group, proving their
claim.
Curiously, the word “graph” does not occur in their paper;
graph theory was not considered to be a part of mainstream
mathematics back then!
The commuting graph is just the first of a number of graphs
defined on groups, which form the topic I will turn to now.
These include the power graph, enhanced power graph,
nilpotency graph, solubilty graph, Engel graph, and generating
graph.



Enter the commuting graph

Their methods were essentially graph-theoretic. Define a graph
Γ with vertex set G, in which g and h are joined if gh = hg. This
is the commuting graph of G.
Brauer and Fowler were interested in bounding its diameter. As
I have defined it, the diameter is 2, since the identity commutes
with all other elements; so they had first to remove the identity.
Having bounded the diameter, they could then bound the
number of vertices, and so the order of the group, proving their
claim.

Curiously, the word “graph” does not occur in their paper;
graph theory was not considered to be a part of mainstream
mathematics back then!
The commuting graph is just the first of a number of graphs
defined on groups, which form the topic I will turn to now.
These include the power graph, enhanced power graph,
nilpotency graph, solubilty graph, Engel graph, and generating
graph.



Enter the commuting graph

Their methods were essentially graph-theoretic. Define a graph
Γ with vertex set G, in which g and h are joined if gh = hg. This
is the commuting graph of G.
Brauer and Fowler were interested in bounding its diameter. As
I have defined it, the diameter is 2, since the identity commutes
with all other elements; so they had first to remove the identity.
Having bounded the diameter, they could then bound the
number of vertices, and so the order of the group, proving their
claim.
Curiously, the word “graph” does not occur in their paper;
graph theory was not considered to be a part of mainstream
mathematics back then!

The commuting graph is just the first of a number of graphs
defined on groups, which form the topic I will turn to now.
These include the power graph, enhanced power graph,
nilpotency graph, solubilty graph, Engel graph, and generating
graph.



Enter the commuting graph

Their methods were essentially graph-theoretic. Define a graph
Γ with vertex set G, in which g and h are joined if gh = hg. This
is the commuting graph of G.
Brauer and Fowler were interested in bounding its diameter. As
I have defined it, the diameter is 2, since the identity commutes
with all other elements; so they had first to remove the identity.
Having bounded the diameter, they could then bound the
number of vertices, and so the order of the group, proving their
claim.
Curiously, the word “graph” does not occur in their paper;
graph theory was not considered to be a part of mainstream
mathematics back then!
The commuting graph is just the first of a number of graphs
defined on groups, which form the topic I will turn to now.
These include the power graph, enhanced power graph,
nilpotency graph, solubilty graph, Engel graph, and generating
graph.



3-transposition groups

As a bridge between the last topic and this one, I will say a few
words about an interesting situation that arises when we
restrict to a conjugacy class of a group.

The group G is called a 3-transposition group if it is generated
by a conjugacy C class of involutions (elements of order 2) with
the property that, for x, y ∈ C, the product xy has order 1, 2 or 3.
We form a graph by joining x and y if their product has order 3.
This is the complement of the induced subgraph of the
commuting graph on C.
The classic example is the symmetric group G = Sn, where C is
the conjugacy class of transpositions. In this case, xy has
order 3 if and only if the 2-element supports of x and y have
non-trivial intersection. So the graph is the famous strongly
regular triangular graph, also known as the line graph of the
complete graph Kn.
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Classification

The 3-transposition groups, under an additional assumption on
normal subgroups, were classified by Bernd Fischer in the
1970s.

In addition to the symmetric groups, and some classical groups
(symplectic, orthogonal and unitary groups over small finite
fields), Fischer found three sporadic simple groups Fi22, Fi23
and Fi24, which now bear his name.
Jonathan Hall weakened Fischer’s assumptions and extended
the result to the infinite. There are also connections with
Moufang loops (in the work of Yuri Manin) and finite geometry.
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Some history

I will say a few words about how I became interested in this
topic.

Two decades ago, Shamik Ghosh asked a question about the
power graph.
Let G be a group. The directed power graph of G has vertex set
G, with an arc x → y if y is a power of x. The power graph is
obtained simply by ignoring directions, and combining any
double edges that result.
Shamik’s question was “To what extent does the power graph
of a group determine the group?” The answer is “Not
completely”. For example, any two groups of exponent 3 with
the same order have isomorphic power graphs (these graphs
are windmills consistng of a number of triangles sharing a
vertex).
I was able to prove that the power graph determines the
directed power graph, at least up to isomorphism.
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And then . . .

Over the next couple of decades, I wrote a couple of papers on
the power graph, but this was not my main focus. Then
someone asked me a question. I do not now remember who it
was, or what the question was, but it caught my interest.

The more I thought, the more I realised I could do. So I opened
a file, and put in all the results I had obtained. When the file
reached 80 pages, I closed it, and put it on the arXiv.
Then two things happened. First, Alireza Abdollahi from
Isfahan, the editor-in-chief of the International Journal of Group
Theory, saw it, and invited me to submit it to his journal. Since
it is a free open access journal, which I like, I was happy to
agree. (It is now the most highly cited paper in the journal.)
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The graphs-on-groups virus hits India

Then Ambat Vijayakumar from Kochi saw it, and invited me to
lead an on-line research discussion. This was in 2021, at the
height of the Covid pandemic. I do believe this helped to keep
me sane at that difficult time. It ran for the whole summer, and
many new results were presented and new projects started.

Since then, this has been my main research interest, and I have
acquired a large number of valued collaborators and a raft of
new publications.
I would like to tell you something about this.
Many graph theorists, meeting a new graph, enquire into its
properties and parameters: Is it Hamiltonian? Regular? What
is its clique number, energy, matching number, etc.? To me, this
is interesting, but my main concern is the interplay between
graphs and groups, so I will start off by outlining my
philosophy on this.
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A conversation between groups and graphs

These are three areas in which one of these subjects can
contribute to the other.

▶ Using graphs, we may find new results about groups. The
Brauer–Fowler theorem is the best example of this; there
are others which I will mention later.

▶ We may be able to define or characterise interesting classes
of groups by putting conditions on various graphs defined
on them. Many of the types of graphs on groups have the
property that the induced subgraph on a subgroup is just
the graph of the same type associated with that subgroup.
So the class of realisable graphs is subgroup-closed.

▶ We may find beautiful and interesting graphs in the
process. But we may have to strip away some
uninteresting stuff first.
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Dominating or isolated vertices

As we saw with Brauer and Fowler, two properties of graphs
which are likely to be important are connectedness and
diameter. But if, as often happens, there are vertices joined to
all others, then we should remove them first.

For example, the set of dominating vertices in the commuting
graph of a group is the centre of the group,

Z(G) = {g ∈ G : (∀x ∈ G)(gx = xg)}.

If we don’t remove them, then the graph will be connected
with diameter at most 2, since we can get from x to y in two
steps via any vertex in the centre.
On the other hand, for many other properties, leaving them in
either has no effect (as with independence number) or a
predictable effect (clique size), or actually make things easier
(since passing to a subgraph may change the centre).
We will see various examples later.
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Meet the cast

There is a great variety of graphs that have been considered. I
will organise them a bit.

Here is a sequence of graphs: each one is contained in the next
as a spanning subgraph. In each case I will give you the
condition for joining a pair x, y of group elements.
▶ The null graph.
▶ The power graph: one of x and y is a power of the other.
▶ The enhanced power graph: both x and y are powers of an

element z (equivalently, ⟨x, y⟩ is cyclic).
▶ The commuting graph: xy = yx (equivalently, ⟨x, y⟩ is

abelian.
▶ The nilpotency graph: ⟨x, y⟩ is nilpotent.
▶ The solubility graph: ⟨x, y⟩ is soluble.
▶ The complete graph.
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Equality . . .

Since these graphs form a hierarchy, we can ask when are
consecutive ones equal.

Proposition

Let G be a finite group.
▶ The power graph and enhanced graph are equal if and only if G

contains no subgroup Cp × Cq, for p and q distinct primes
(equivalently, all elements of G have prime power order).

▶ The enhanced power graph is equal to the commuting graph if
and only if G contains no subgroup Cp × Cp for p prime.

▶ The commuting graph is equal to the nilpotency graph if and
only if all Sylow subgroups are abelian.

▶ The nilpotency graph is equal to the solubility graph if and only
if G is nilpotent.
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. . . continued

There are classification theorems associated with the first two
equalities on the last slide.

Groups with all elements of prime power order are called
EPPO groups, and have quite a long history. Higman found the
soluble ones in the 1950s, and Suzuki the simple ones in the
1960s. In 1981 Brandl gave the complete classification; but it
was published in a rather obscure Italian journal, and so was
rediscovered a couple of times.
Groups containing no subgroup Cp × Cp have Sylow subgroups
which are cyclic or generalized quaternion. Now theorems of
Burnside, Glauberman, and Gorenstein and Walter give us a
result from which the classification can be read off.
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Graphs related to generating sets

The generating graph has x and y adjacent if ⟨x, y⟩ = G.

Of course, this graph is null unless G can be generated by two
elements. Fortunately there are plenty of interesting
2-generator groups, including all the non-abelian finite simple
groups.
To handle other sizes of generating sets, Andrea Lucchini
defined two further classes:
▶ The independence graph, where x and y are joined if {x, y}

is contained in an independent generating set for G (one
from which no element can be dropped without losing the
generating property).

▶ The rank graph, where x and y are joined if {x, y} is
contained in a generating set of minimum size (this
minimum size is the rank of G).
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generating property).

▶ The rank graph, where x and y are joined if {x, y} is
contained in a generating set of minimum size (this
minimum size is the rank of G).
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How are they related?

Proposition

Let G be a finite group.

▶ The independence graph is contained in the complement of the
power graph.

▶ The rank graph is contained in the complement of the enhanced
power graph.

▶ The generating graph is contained in the complement of the
commuting (resp., nilpotency, solubility) graph if and only if G
is non-abelian (resp. non-nilpotent, non-soluble).

Proof of (a): if y is a power of x, and we have a generating set
which contains x, then we can delete y from it.
Proof of (b): if x and y are powers of z, and a generating set
contains both x and y, we can get a smaller one by deleting x
and y and including z.
Proof of (c): clear.
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Equality?

A substantial paper by Freedman, Lucchini, Nemmi and
Roney-Dougal determined all groups whose independence
graph is the complement of the power graph, and all groups
whose rank graph is the complement of the enhanced power
graph.

Although all the groups in the two lists are soluble groups with
fairly simple structure, the proof has to go by way of a detailed
analysis of finite simple groups, which involved correcting a
couple of results in the literature.
It is reassuring when mathematics self-corrects in this way!
Equality in the three cases of (c) is realised by minimal
non-abelian (resp., minimal non-nilpotent, minimal
non-soluble) groups. In the first two cases there are complete
classifications known. In the third, a minimal non-soluble
group has a minimal simple group as a quotient, and such
groups are all known (using Thompson’s work on N-groups);
this is enough for many purposes.
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Graphs and equivalence relations

Another way of producing graphs from a group is as follows.
Let A be one of the graph types we have already met, and B an
equivalence relation defined by the group structure. Typical
examples for B are equality, conjugacy, or same order.

We define a graph (referred to in the literature as the B superA
graph) as follows. The vertices, as usual, are the elements of G.
We join x to y if there exist x′ and y′ such that x′ is equivalent to
x, and y′ to y, in the B relation, while x′ and y′ are joined in the
A graph.
For example, the conjugacy supercommuting graph has an
edge from x to y if there are conjugates x′ of x and y′ of y which
commute.
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Some properties

Theorem
▶ For any group G, the order superenhanced power graph of G is

equal to the order supercommuting graph.

▶ The commuting graph f G is equal to the conjugacy
supercommuting graph if and only if G is a 2-Engel group.

▶ The power graph of G is equal to the conjugacy superpower
graph if and only if G is a Dedekind group.

▶ The enhanced power graph is equal to the conjugacy
superenhanced power graph if and only if G is a Dedekind group.

Here a Dedekind group is a group in which every subgroup is
normal (these are all known).
A 2-Engel group is one satisfying the identity [[x, y], y] = 1,
where [x, y] is the commutator x−1y−1xy. The class of 2-Engel
groups is contained in the class of nilpotent groups of class 3,
and contains the class of nilpotent groups of class 2.
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Compressed graphs

In the situation where we have a graph and an equivalence
relation on a group, it is sometimes more convenient to contract
each equivalence class to a single vertex. So there is an edge
between classes C1 and C2 in the compressed graph if and only
if there exist x1 ∈ C1 and x2 ∈ C2 such that there is an edge
from x1 to x2 in the original graph.

These were studied independently of the super graphs on the
last slide, and typically go by different names. For example, the
commuting conjugacy class graph, or CCC-graph of a group G
has vertices the conjugacy classes in G, with C1 and C2 joined if
there exist x1 ∈ C1 and x2 ∈ C2 such that x1x2 = x2x1.
Similarly, we have the nilpotent and soluble conjugacy class
graphs, where we join C1 to C2 if there exist x1 ∈ C1 and x2 ∈ C2
such that ⟨x1, x2⟩ is nilpotent (resp. soluble). These are called
the NCC-graph and SCC-graph, for short.
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On a theorem of Landau

An old theorem of Landau asserts that the order of a finite
group is bounded by a function of the number of conjugacy
classes (that is, the number of vertices of any of the conjugacy
class graphs) of the group.

We (that is, Parthajit Bhowal, Rajat Kanti Nath, Benjamin
Sambale and I) were able to improve this as follows:

Theorem
The order of a finite group G is bounded by a function of the clique
number of the soluble conjugacy class graph of G.
Unlike Landau, we use the Classification of Finite Simple
Groups, but only in a rather low-key way, and we suspect that
this can be avoided.



On a theorem of Landau

An old theorem of Landau asserts that the order of a finite
group is bounded by a function of the number of conjugacy
classes (that is, the number of vertices of any of the conjugacy
class graphs) of the group.
We (that is, Parthajit Bhowal, Rajat Kanti Nath, Benjamin
Sambale and I) were able to improve this as follows:

Theorem
The order of a finite group G is bounded by a function of the clique
number of the soluble conjugacy class graph of G.
Unlike Landau, we use the Classification of Finite Simple
Groups, but only in a rather low-key way, and we suspect that
this can be avoided.



On a theorem of Landau

An old theorem of Landau asserts that the order of a finite
group is bounded by a function of the number of conjugacy
classes (that is, the number of vertices of any of the conjugacy
class graphs) of the group.
We (that is, Parthajit Bhowal, Rajat Kanti Nath, Benjamin
Sambale and I) were able to improve this as follows:

Theorem
The order of a finite group G is bounded by a function of the clique
number of the soluble conjugacy class graph of G.

Unlike Landau, we use the Classification of Finite Simple
Groups, but only in a rather low-key way, and we suspect that
this can be avoided.



On a theorem of Landau

An old theorem of Landau asserts that the order of a finite
group is bounded by a function of the number of conjugacy
classes (that is, the number of vertices of any of the conjugacy
class graphs) of the group.
We (that is, Parthajit Bhowal, Rajat Kanti Nath, Benjamin
Sambale and I) were able to improve this as follows:

Theorem
The order of a finite group G is bounded by a function of the clique
number of the soluble conjugacy class graph of G.
Unlike Landau, we use the Classification of Finite Simple
Groups, but only in a rather low-key way, and we suspect that
this can be avoided.



Cliques in the power graph and enhanced power graph
If some elements of a group are such that any pair generate a
cyclic group, then all of them lie in a cyclic group. So a maximal
clique in the enhanced power graph is a maximal cyclic
subgroup, and the clique number is the largest order of an
element of the group.

A clique in the power graph is contained in a clique in the
enhanced power graph, so a maximal clique is contained in a
cyclic subgroup, but not necessarily one of maximum order.
For the power graph of a cyclic group of order n has order F(n),
where F is the arithmetic function defined by

F(1) = 1, F(n) = F(n/p) + ϕ(n) for n > 1,

where ϕ is Euler’s function and p is the smallest divisor of n.
For example, in the group PGL(2, 11), the maximum element
orders are 10, 11 and 12, so the enhanced power graph has
clique number 12. But F(10) = 9, F(11) = 11, and F(12) = 9, so
the power graph has clique number 11.
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Cliques in the power graph

The recurrence for F can be used to show that
ϕ(n) ≤ F(n) ≤ 3ϕ(n). In fact,

lim sup
F(n)
ϕ(n)

= 2.6481017597 . . .

There is a limit formula for this constant as a limit but we know
nothing about its arithmetic character.

The power graph is the comparability graph of a partial order,
so is perfect (that is, every induced subgraph has clique
number equal to chromatic number).
This is not true for the enhanced power graph, but Veronica
Phan and I showed:

Theorem
The enhanced power graph of a finite group is weakly perfect (that is,
has clique number equal to chromatic number).



Cliques in the power graph

The recurrence for F can be used to show that
ϕ(n) ≤ F(n) ≤ 3ϕ(n). In fact,

lim sup
F(n)
ϕ(n)

= 2.6481017597 . . .

There is a limit formula for this constant as a limit but we know
nothing about its arithmetic character.
The power graph is the comparability graph of a partial order,
so is perfect (that is, every induced subgraph has clique
number equal to chromatic number).

This is not true for the enhanced power graph, but Veronica
Phan and I showed:

Theorem
The enhanced power graph of a finite group is weakly perfect (that is,
has clique number equal to chromatic number).



Cliques in the power graph

The recurrence for F can be used to show that
ϕ(n) ≤ F(n) ≤ 3ϕ(n). In fact,

lim sup
F(n)
ϕ(n)

= 2.6481017597 . . .

There is a limit formula for this constant as a limit but we know
nothing about its arithmetic character.
The power graph is the comparability graph of a partial order,
so is perfect (that is, every induced subgraph has clique
number equal to chromatic number).
This is not true for the enhanced power graph, but Veronica
Phan and I showed:

Theorem
The enhanced power graph of a finite group is weakly perfect (that is,
has clique number equal to chromatic number).



Cliques in the power graph

The recurrence for F can be used to show that
ϕ(n) ≤ F(n) ≤ 3ϕ(n). In fact,

lim sup
F(n)
ϕ(n)

= 2.6481017597 . . .

There is a limit formula for this constant as a limit but we know
nothing about its arithmetic character.
The power graph is the comparability graph of a partial order,
so is perfect (that is, every induced subgraph has clique
number equal to chromatic number).
This is not true for the enhanced power graph, but Veronica
Phan and I showed:

Theorem
The enhanced power graph of a finite group is weakly perfect (that is,
has clique number equal to chromatic number).



The jewel in the lotus

A lotus flower is a flower of exuberant beauty, but it quickly
loses its petals to leave something more austere.
We saw earlier that we can get interesting graphs by restricting
to a conjugacy class. (So the induced subgraph of the
commuting graph of Sn on the class of transpositions is the
complement of the line graph of Kn.)
But can we get the graph itself to tell us where the jewel lies?
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A pointer

Ten years ago, Colva Roney-Dougal and I looked at the
automorphism group of the generating graph of the alternating
group A5 (a group of order 60). We expected that the result
would be the automorphism group of A5 (which is S5), or
something near that.

Instead we found that the automorphism group has order
23482733690880.
If we had used the commuting graph instead, we would have
found an even larger order: 477090132393463570759680000.
Where does the rubbish come from, and how do we get rid of
it?
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Twins

Two vertices v, w of a graph are twins if they have the same
neighbours apart possbily from one another; that is, they are
not joined and have the same open neighbourhoods, or they
are joined and have the same closed neighbourhoods. So there
are two kinds of twins, open and closed; but the distinction
won’t concern us.

If you are interested in graphs on groups, twins are bad news.
For if v and w are twins, then they can be swapped by an
automorphism which fixes all other vertices. This
automorphism is local, and tells us little about the global
structure of the graph.
These local automorphisms generate a subgroup which is a
direct product of symmetric groups, but tells nothing about the
graph structure except which pairs of vertices are twins.
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Twin reduction

So we want to get rid of the twins.

The process of twin reduction consists of finding a pair of
twins, identifying them (equivalently, deleting one), and
repeating until no twins remain.
After performing twin reduction, further twins may be created,
so we can continue.
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Theorem
Two graphs obtained by twin reduction of the same graph are
isomorphic.
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The result of twin reduction

The graph resulting from twin reduction has no standard
name; I call it the cokernel of the original graph.

A cograph if a graph not containing the 4-vertex path as an
induced subgraph. There are many other characterisations, for
example, a cograph is a graph which can be built from single
vertices by the operations of complementation and disjoint
union.
The concept arose many times and was given different names
by different authors, including “complement-reducible graph”
and “hereditary Dacey graph”.

Theorem
The cokernel of a graph Γ is a single vertex if and only if Γ is a
cograph.
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When is a graph on a group a cograph?
This gives point to the question:

Question
Given a type of graph on groups, for which groups is it a cograph?

This can be asked for all the various types of graphs we have
defined so far (e.g. power graph, commuting graph, generating
graph, independence graph), together with differences between
them. There is much that is not known.
I looked at this question with Sucharita Biswas, Angsuman Das
and Hiranya Kishore Dey. To increase our chances of success,
we decided two things:
▶ we would look at fairly sparse graphs (we chose the

difference of the power graph and the enhanced power
graph);

▶ we would restrict our search to simple, or almost simple,
groups.

We found four types of behaviour (more are possible).
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Cokernels of the difference graph on simple groups

▶ The simplest is the class of EPPO groups where, as we saw,
the power graph and enhanced power graph are equal, so
that D(G) has no edges. As we saw, these groups were
determined by Brandl. Among simple groups we have a
small finite number of groups PSL(2, q) and Sz(q) and the
group PSL(3, 4).

▶ Next come the groups whose difference graph is a
cograph, so that the cokernel has just a single vertex. We
determined the simple groups for which this condition
holds. We get a few more groups PSL(2, q) and Sz(q).



Cokernels of the difference graph on simple groups

▶ The simplest is the class of EPPO groups where, as we saw,
the power graph and enhanced power graph are equal, so
that D(G) has no edges. As we saw, these groups were
determined by Brandl. Among simple groups we have a
small finite number of groups PSL(2, q) and Sz(q) and the
group PSL(3, 4).

▶ Next come the groups whose difference graph is a
cograph, so that the cokernel has just a single vertex. We
determined the simple groups for which this condition
holds. We get a few more groups PSL(2, q) and Sz(q).



▶ Next come groups where the cokernel of the difference
graph consists of a number of small components, pairwise
isomorphic. For the groups PSL(2, 23) and PSL(2, 25), we
obtain respectively 253 or 325 copies of the graph K5 − P4.
We do not know why the components are the same in the
two cases.

▶ In the final case, we find an interesting connected graph
with low valency and high girth, and no automorphisms
other than those of the group we started with.

I will tell you about a couple of these.
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Some beautiful graphs

▶ G = M11, the smallest Mathieu group. In this case, we
obtain a bipartite graph on 165 + 220 vertices; it is
semiregular, with valencies 4 and 3 in the two bipartite
blocks; it is connected; and it has diameter 10 and girth 10.
Its automorphism group is M11.

▶ G = PSL(3, 3). This acts on the projective plane over the
field with 3 elements. The cokernel of the difference graph
has 169 vertices, which can be identified with the
point-line pairs in the plane; these fall into two types, flags
and antiflags of the graph, which are bipartite blocks, with
valencies 9 and 4. The graph is connected with diameter 5
and girth 6. Its automorphism group is PGL(3, 3).

The first is clearly “sporadic”, but the second can be defined
over any finite field, and might be an interesting topic for finite
geometers to study.
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Simplicial complexes

A simplicial complex ∆ is a downward-closed collection of
finite subsets (called simplices or simplexes) of a set X. We
assume that every singleton of X belongs to ∆. For geometric
reasons, a simplex of cardinality k has dimension k − 1. Thus a
point or vertex of X has dimension 0, while an edge {x, y} has
dimension 1, and a triangle {x, y, z} has dimension 2.

The k-skeleton of ∆ consists of all the subsets of dimension at
most k (thus, cardinality at most k + 1). Thus, the 1-skeleton is a
graph.
It seems that there are many ideas and problems about graphs
on groups which have analogues for simplicial complexes. I
will describe just two simplicial complexes on a group, and
pose a problem connecting them.
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Independence and strong independence

A subset A of a group G is independent if none of its elements
can be expressed as a word in the other elements and their
inverses; equivalently, if a /∈ ⟨A \ {a}⟩ for all a ∈ A. The
independence complex consists of all the independent subsets
of G. It is a simplicial complex.
A subset A of a group G is called strongly independent if no
subgroup of G containing A has fewer than |A| generators. The
strong independence complex of G is the complex whose
simplices are the strongly independent sets. It is a ls a
simplicial complex.



Two problems

Question
For which groups G do the independence and strong independence
complexes of G coincide?
It is known that being an EPPO group (all elements have prime
power order) is a necessary condition, while being an abelian
p-group, for prime p, is sufficient.

Question
For which groups G do the simplexes of maximal cardinality in the
independence complex generate G?
This is the case for the symmetric group Sn, by a theorem of
Julius Whiston, who also showed that the maximum
cardinality is n − 1.


