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It is also just a month short of 18 years ago when I first started
thinking about the topic I am talking about today, a connection
between permutation groups and semigroups.

This came about in January 2008 as a result of three
independent things:

» I posed a problem about cores of symmetric graphs to
Cristy Kazanidis;

» Robert Bailey reported to me a conversation he had had
with Ben Steinberg at a bus stop in Ottawa;

» I was asked for a summary of a talk at Oberwolfach the
previous year, and looking it out I found another talk by
Peter Neumann on section-regular partitions.

This led to a lot of work on synchronization, but in addition a
long-term collaboration with Jodo Aratjo (and subsequently
others) on the kind of problems I will describe here.
Everything in this talk will be finite.
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There is one problem from back then where there has been less
progress than I had hoped; I will talk about that today. First, I
will explain the general context.

The original problem was the following. Let P be a property of
semigroups (or of transformation semigroups). Which
permutation groups G on () have the property that, for any
map f : O — ) which is not a permutation, the semigroup
(G,f) has property P?

If we can answer that question, we can then weaken the
hypothesis by asking that the condition holds for maps of a
fixed rank k, or with a fixed image.

I will discuss briefly the situation for the property of regularity
before turning to the property that leads us to Road Closure.
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A semigroup S is regular if every element has a quasi-inverse y
satisfying xyx = x. Note that we can assume in addition that
yxy = y. For, if xyx = x and z = yxy, then

> Xxzx = Xyxyx = xyx = x,

> ZXZ = YXYXyxy = yxyxy = yxy = z.
Note that, if y is a quasi-inverse of x, then e = xy is an
idempotent (that is, 2 =e).
A permutation group G on (2 has the universal transversal
property (for short, the ut property) if for every subset A of (
and partition P of () with |A| = |P|, there is an element of G
which maps A to a transversal of P.

Theorem
A permutation group G has the ut property if and only if, for every
non-permutation f, the semigroup (G, f) is regular.
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Jodo Aratjo, James Mitchell and Csaba Schneider showed that
the permutation groups with the ut property are the alternating
and symmetric groups together with eight small exceptions
(with degrees between 5 and 9).

This might remind you of the classification of the set-transitive
permutation groups, those which act transitively on subsets of
the domain of any given cardinality.

In their book on the theory of games, von Neumann and
Morgenstern asked for a classification of these groups. In the
second edition, they claim that such a classification was given
by Chevalley (I have not seen this). Wielandt attributes the
result to Beaumont and Peterson. The conclusion is that they
are symmetric or alternating groups together with four small
exceptions of degrees 5, 6, 9 and 9.
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short, the k-ut property) if for every subset A of () and partition
P of Q) with |A| = |P| = k, there is an element of G which maps
A to a transversal of P.

This is equivalent to saying that (G, f) is regular for any map f
of rank at most k. There is a subtlety here. It is necessary to
prove a Livingstone-Wagner type theorem asserting that k-ut
implies (k — 1)-ut.

Thus k-ut has something in common with k-set transitivity. We
note in particular that a k-set transitive group has k-ut, since
given A and P we select a transversal B for P and map A to B.
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k-transitive, with known exceptions; and the classification of
k-transitive groups for k > 2 follows from the Classification of
Finite Simple Groups. In particular, a 6-set transitive group of
degree at least 12 is symmetric or alternating

Similarly, we were able to show that, for 6 < k < n/2, a group
with k-ut is symmetric or alternating; for k = 5, such a group is
either 5-transitive or PT'L(2,32). For k = 3 and k = 4, there are
some families of groups for which the status of k-ut is not
known. One of these families consists of the Suzuki groups
Sz(q), for which we don’t know if they have 3-ut. (Pablo Spiga
recently found a computer-free proof that Sz(8) has 3-ut;
Leonard Soicher has checked this with GAP and shown the
same for 5z(32).)

But for k = 2, things are very different ...
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Recall that a permutation group G on () is primitive if it
preserves no non-trivial partition of ().
An orbital graph for G is a graph with vertex set () whose
edges form an orbit of G on 2-element subsets of (). Donald
Higman observed that G is primitive if and only if every orbital
graph for G is connected.

Proposition
G satisfies 2-ut if and only if it is primitive.

Proof.

If G fails 2-ut, then there is a 2-part partition P and an orbital
graph I' all of whose edges are contained in parts of P. But then
I' is disconnected, and the connected components form a
G-invariant partition; so G is imprimitive.

Conversely, if G has an invariant partition P, and x, y lie in the
same part, then no translate of {x, y} is a transversal to the
partition one of whose parts is a part of P. O
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An idempotent in a semigroup is an element e satisfying ¢* = e.
Thus an idempotent in a transformation semigroup is a map
which induces the identity on its image.

As a pointer to where we are going, we show the following.
This follows from the fact that regular semigroups contain
idempotents, but here is a self-contained proof.

Proposition

Suppose that G has the k-ut property. Then, for any map f of rank k,
(G, f) contains an idempotent.

Proof.

Let P be the kernel of f (the partition with x, y in the same part
if xf = yf) and A its image. Thus |P| = |A| = k.

Since G has k-ut, there is an element ¢ € G such that Ag is a
transversal to P. Then gf induces a permutation on A, so there
exists a number m such that (gf)™ is an idempotent. O
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Semigroup theorists are very interested in the stronger
property of idempotent generation, asserting that the
semigroup is generated by its idempotents.

Here are two results.

Theorem (J. Howie)

Let X be a finite set and t : X — X be a singular (non-invertible)
transformation. Then t can be written as the product of idempotent
transformations.

Theorem (J. Erdos)

Let K be a field and let A be a singular n X n matrix with entries in K.
Then M can be written as the product of idempotent matrices.

If you know what an independence algebra is, you will
probably guess that the result extends to these.
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Now semigroups of the form S = (G, f) are never going to be
idempotent-generated. For a generating set for S must contain
a generating set for G (since a permutation cannot be a product
including non-permutations), but the only idempotent in G is
the identity.

So we ask instead that the semigroup (G, f) \ G is generated by
its idempotents. We say that G has the id property if this holds.
Groups with the id property were determined by Aratjo,
Mitchell and Schneider in the same paper I mentioned earlier.
Apart from the symmetric and alternating groups, there are
only three exceptional groups, with degrees 5 and 6.
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We say that a permutation group G on () has the k-id property
if, given any map on Q) of rank k, the semigroup (G, f) \ G is
idempotent generated.

Most of the rest of my talk will concern the case k = 2, but I will
begin by summarising what is known for higher values.

First, it is not hard to show that k-id implies k-ut. So for k > 3,
we can turn to the known results about groups with the k-ut
property and ask which of them have k-id.

There is also a strengthening of k-ut known as strong k-ut,
which implies k-id. So the groups we are after are sandwiched
between k-ut and strong k-ut.
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Some results

In some cases where we have been unable to decide whether
groups have k-ut or not, we have shown that they do not have
the stronger property of k-id. These include

» PGL(2,p), for p = 11 (mod 12), fails 4-id (for other primes,

it already fails 4-ut);

» AGL(1,p), for p = 11 (mod 12), fails 3-id;

» AGL(1,2?%) fails 3-ut and 3-id;

» PGL(2,2%) fails 4-ut and 4-id.
The Suzuki groups remain as a stumbling block for both 3-ut

and 3-id, though there is recent computational progress by
Leonard Soicher.
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Let G be a transitive permutation group on (). We say that G
has the Road Closure Property (RCP) if, for any orbital graph
(Q), ©) and any block of imprimitivity B for the action of G on
O, the graph (Q, O \ B) is connected.

In other words, if the orbital graph is thought of as a road
network, and workmen dig up some of the roads forming a
block of imprimitivity, it is still possible to get between any two
vertices in the network by road.

The name was given when many of the roads in the
neighbourhood of St Andrews were closed for extended
periods while the University installed a pipe to bring hot water
from a boiler in Guardbridge to heat the University buildings.

Major Roadworks |
Guardbridge
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Connection with idempotent generation

The RCP is the link between the 2-id property and more
familiar permutation group properties. Jodo Aratjo and I were
able to prove, by quite a long argument:

Theorem
A transitive permutation group G on Q) has the 2-id property if and
only if it has the Road Closure Property.

We already saw that the 2-ut property is equivalent to
primitivity, which itself is equivalent to the connectedness of
every orbital graph. As we also saw, the 2-id property is a
strengthening of the 2-ut property, and the RCP is clearly a
strengthening of the connectedness of all the orbital graphs.
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familiar permutation group properties. Jodo Aratjo and I were
able to prove, by quite a long argument:

Theorem
A transitive permutation group G on Q) has the 2-id property if and
only if it has the Road Closure Property.

We already saw that the 2-ut property is equivalent to
primitivity, which itself is equivalent to the connectedness of
every orbital graph. As we also saw, the 2-id property is a
strengthening of the 2-ut property, and the RCP is clearly a
strengthening of the connectedness of all the orbital graphs.
I will give an indication of the proof on the next slide.
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Let G be a permutation group on (); let A be a k-subset and P a
k-partition of (). The Houghton graph associated with the data
(G,k, A, P) is the bipartite graph whose vertex set is AG U PG,
with an edge from A’ € AGto P’ € PG if A’ is a transversal to
r.

Now we can show that connectedness of all k-Houghton
graphs is a necessary condition for the k-id property; moreover,
for k = 2, these are equivalent.

The 2-Houghton graphs potentially have exponentially many
vertices. By contrast, the orbital graph (), AG) for a 2-set A has
only n = |Q] vertices and O(n?) edges, so is more manageable.
So the last step is to show that, if a 2-Houghton graph is
disconnected, then the corresponding orbital graph gives a
failure of the RCP, and conversely. This completes the proof.
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History

Ten years ago, Jodo and I did this and wrote it up together with
a preliminary analysis of the RCP. It is on the arXiv at
1611.08233, and we submitted it to a journal who said, it is too
interdisciplinary, we can’t find a referee.

Subsequently Jodo arranged three workshops on the problem,
in Caparica, Arrdbida, and Maria da Guarda (near Serpa).
Many people were involved, but special thanks to the major
contributors: Wolfram Bentz, Martin Liebeck, Cheryl Praeger,
Leonard Soicher, and (especially) Pablo Spiga.

The problem is not completely solved, but we have at least a
satisfactory reduction to the almost simple case, together with a
number of examples.
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We know that groups satisfying 2-id are primitive. So we turn
to the O’'Nan-Scott Theorem, of which a simplified version
suffices for our needs.

A Cartesian structure on () is an identification of () with the set
of words of length m over an alphabet of size s, for some

m,s > 1. Its automorphism group is the wreath product S S,
in its product action.

A primitive permutation group is basic if it does not preserve a
Cartesian structure on ().

Theorem (O'Nan—Scott)

A primitive basic permutation group is affine, diagonal or almost
simple.
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The RCP is closed under taking supergroups, so it suffices to
show that the wreath product S5 S, fails the RCP. For this
group, the Hamming graph (in which two m-tuples over an
s-letter alphabet are joined if they differ in just one coordinate)
is an orbital graph. The m coordinates give blocks of
imprimitivity for the group action on edges; the ith block
consists of tuples which differ only in the ith coordinate. If we
delete this block, we cannot move from a tuple to another with
a different value in the ith coordinate.
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The RCP is closed under taking supergroups, so it suffices to
show that the wreath product S5 S, fails the RCP. For this
group, the Hamming graph (in which two m-tuples over an
s-letter alphabet are joined if they differ in just one coordinate)
is an orbital graph. The m coordinates give blocks of
imprimitivity for the group action on edges; the ith block
consists of tuples which differ only in the ith coordinate. If we
delete this block, we cannot move from a tuple to another with
a different value in the ith coordinate.

In the figure, deleting the blue edges leaves a graph whose
connected components are the rows.
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Affine groups

This leaves us with affine, diagonal and almost simple groups
to handle.

This was the situation before the three workshops on the
problem. The rest of the talk will summarise some of the results
obtained.

A permutation group G on () is affine if it has a regular normal
subgroup N which is elementary abelian; so we can identify ()
and N with a finite vector space V = V(d, p) and the stabiliser
of 0 with a linear group H on V (a subgroup of GL(d,p)). So G
is the semidirect product of V by H. Note that, by definition,
affine groups are transitive.
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RCP for affine groups

Let G be an affine group V x H, acting on V. Then
» G is primitive if and only if H is irreducible;

» G is basic if and only if H is primitive as a linear group
(that is, preserves no direct sum decomposition of V).

Theorem
Let G = V x H be an affine primitive group.

» If H is an imprimitive linear group, then G is non-basic.

» If H is a primitive linear group, then G satisfies RCP.

This completely settles the question for affine groups.



Diagonal groups

A diagonal primitive group G has a normal subgroup
isomorphic to T%+1, acting on the cosets of its diagonal
subgroup, where T is a non-abelian finite simple group. Thus
the maximal diagonal groups have the form

G < T*1.(Out(T) x Syy1). Here Aut(T) acts on T?+! by acting
in the same way on each coordinate, but the inner
automorphisms are induced by the diagonal subgroup so are in
T9+1; and the symmetric group S;,; permutes the coordinates.
The point stabiliser is AutT x Sy, 1.



Diagonal groups

A diagonal primitive group G has a normal subgroup
isomorphic to T%+1, acting on the cosets of its diagonal
subgroup, where T is a non-abelian finite simple group. Thus
the maximal diagonal groups have the form

G < T*1.(Out(T) x Syy1). Here Aut(T) acts on T?+! by acting
in the same way on each coordinate, but the inner
automorphisms are induced by the diagonal subgroup so are in
T9+1; and the symmetric group S;,; permutes the coordinates.
The point stabiliser is AutT x Sy, 1.

Now let H be a subgroup of S;1. It is known that the diagonal
group T%F1.(Out(T) x H) is primitive if and only if H is
primitive (where, confusingly, the second occurrence of the
word “primitive” here includes the trivial group on two points,
since it fixes no non-trivial partition.) To avoid this
complication we assume thatd > 1.
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Now something remarkable happens.

Theorem
The diagonal group T*+1.(Out(T) x H) fails the RCP if and only if
H fails the RCP.

So we can construct infinitely many groups failing the RCP by
starting with a single one and plugging it into this construction,
and then iterating. (The degrees of groups in such a sequence
grow exponentially!) The starting group could be non-basic, or
one of the almost simple examples we will meet next. So
although there are infinitely many examples, the situation is
well under control for diagonal groups.



Almost simple groups: examples

Theorem
Let G be a primitive group having an imprimitive subgroup N of
index 2. Then G fails the RCP.

Proof.

Let P be an N-invariant partition. It is not G-invariant, so has
an image Q under G \ N. Now the meet of P and Q is
G-invariant, and so trivial. Call the elements of P “points” and
those of Q “blocks”, a point and block being “incident” if they
intersect in an element of (). We obtain an incidence structure
on which G acts flag-transitively, and the original domain () is
identified with the set of flags.
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Theorem
Let G be a primitive group having an imprimitive subgroup N of
index 2. Then G fails the RCP.

Proof.

Let P be an N-invariant partition. It is not G-invariant, so has
an image Q under G \ N. Now the meet of P and Q is
G-invariant, and so trivial. Call the elements of P “points” and
those of Q “blocks”, a point and block being “incident” if they
intersect in an element of (). We obtain an incidence structure
on which G acts flag-transitively, and the original domain () is
identified with the set of flags.

Now there is an orbital graph for G whose edges are pairs of
flags sharing a point or a block. The two types are blocks of
imprimitivity, and removing one type disconnects the graph.
(If we remove the edges corresponding to flags sharing a block,
then we cannot move from a flag to one with a different

point. O



Duality and triality

This gives us large numbers of examples failing RCP. But there
are more. The incidence structure may be a nice self-dual
geometric object such as point-hyperplane pairs in projective
space, or not. A family of examples is given by the groups
PGL(2,p), where p is a prime congruent to +11 or +19

(mod 40), acting on the cosets of a subgroup isomorphic to As.
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geometric object such as point-hyperplane pairs in projective
space, or not. A family of examples is given by the groups
PGL(2,p), where p is a prime congruent to +11 or +19

(mod 40), acting on the cosets of a subgroup isomorphic to As.
But we can use triality instead. The action of PQ (7).S3 on
mutually incident triples (point, solid 1, solid 2) fails the RCP.
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There are just two more known examples where the group has
three blocks of imprimitivity on edges of an orbital graph.
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Almost simple groups: a conjecture

What is the “Road Closure Conjecture”? It has changed several
times as new examples are found. I believe this is the present
version:

Conjecture

Let G be an almost simple primitive group which fails to have the
Road Closure Property. Then G has two or three blocks of
imprimitivity on the edge sets of the corresponding orbital graph, and
the subgroup fixing the blocks setwise contains the socle of G.

Despite some progress, there are still obstacles in the way. We
need, for example, to handle the case where the stabiliser of a
block does not contain the socle (so is a “novelty” subgroup
of G).

The story continues ...



