
Inverse group theory

Peter J. Cameron
University of St Andrews
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Happy birthday, P3!

More than half our lives ago, we were co-authors of a paper
which turned out to be quite influential, not only for finite
groups but for profinite groups too. This was even before we
first met (if my memory is correct).
▶ L. Babai, P. J. Cameron and P. P. Pálfy, On the orders of primitive

groups with bounded non-abelian composition factors, J. Algebra
79 (1982), 161–168; doi: 10.1016/0021-8693(82)90323-4

For your birthday I would like to present another area for
which both finite and infinite groups are relevant. So here is a
guided tour through quite a bit of group theory.
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Integrals of groups

I think it was more than ten years ago that, while I was visiting
Lisbon, João Araújo and Francesco Matucci tried to interest me
in their new project on integrals of groups. I thought at first
that it was just light relaxation from their serious work on
semigroups, automata and Thompson groups. But as we
progressed, it became more serious.

This has nothing to do with calculus except as a metaphor.
Integration is the reverse of differentiation. So they considered
a group H to be an integral of a group G if the derived group of
H is isomorphic to G. The group G is integrable if it has an
integral.
The term was coined by Alireza Abdollahi in Isfahan, Iran.
Now I want to ask a simple question, to convince you that this
is more serious than it looks.
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An innocent question

Question
Is it decidable whether a finite group G is integrable?

To our embarrassment, we don’t know the answer to this
question.
If we could answer the following question, it would settle this
one, though not in an elegant way:

Question
Is there a computable function F such that, if the finite group G has an
integral, then it has an integral of order at most F(|G|)?
For, for n = 1, 2, . . ., we could determine the groups of order
n|G| and check whether any of them has derived group
isomorphic to G. A positive answer to the second question
above would guarantee that the algorithm terminates.
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Eick’s theorem

But if we replace “derived group” by “Frattini subgroup”, the
answer is known, and is “yes”. After a lot of work by many
group theorists including Wolfgang Gaschütz and Bernhard
Neumann, Bettina Eick proved the following:

Theorem
A finite group G is the Frattini subgroup of some finite group H if and
only if Inn(G) ≤ Φ(Aut(G)) (where Φ is the Frattini subgroup).
This is a very satisfactory result, since it is a test just on the
group G and doesn’t require computing groups of arbitrarily
larger order.
I should note, though, that the analogous result for the derived
group is false.
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Some history

Francesco managed to catch the interest of his teacher Carlo
Casolo in Florence.

So in early 2020 he arranged for him and me to visit Carlo in
Florence to work on the problem.
Two small local difficulties:
▶ It was a season of particularly violent storms. My flight to

Florence was delayed by a day; the flight back left on time
but it was the roughest landing I had ever experiencd.

▶ It was the start of the Covid pandemic. At that time, Covid
had reached north Italy but Florence was still open.

But the visit was very successful. I got on very well with Carlo
and we produced a sheaf of results.
A few months later he was dead.
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Carlo left us with a big pile of notes, which we didn’t find easy
to unnderstand. We had to recruit Claudio Quadrelli to help
with the profinite groups.

We ended up with two papers:
▶ J. Araújo, P. J. Cameron, C. Casolo and F. Matucci, Integrals of

groups, Israel J. Math. 234 (2019), 149–178; doi:
10.1007/s11856-019-1926-y

▶ J. Araújo, P. J. Cameron, C. Casolo, F. Matucci and C. Quadrelli,
Integrals of groups, II, Israel J. Math. 263 (2024), 49–91; doi:
10.1007/s11856-024-2610-4

I will tell you some of the results.



Carlo left us with a big pile of notes, which we didn’t find easy
to unnderstand. We had to recruit Claudio Quadrelli to help
with the profinite groups.
We ended up with two papers:
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Finite groups

▶ If a finite group has an integral, then it has a finite integral.

▶ We have been unable to bound the order of the smallest
integral of an integrable group. Our best result is: if there
is a function F′ with the property that any integrable finite
group G has an integral H in which the exponent of Z(H)
is at most F′(|G|), then the answer to the second question
earlier is “yes”.

▶ A precise characterization of the set of natural numbers n
for which every group of order n is integrable: these are
the cubefree numbers n which do not have prime divisors
p and q with q | p − 1. (This is similar to the condition for
every group of order n to be cyclic, whose asymptotics
were worked out by Paul Erdős.)

▶ An abelian group of order n has an integral of order at
most n1+o(1), but may fail to have an integral of order
bounded by cn for any constant c.
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Abelian groups

▶ Every abelian group is integrable. (This is a theorem of
Guralnick; in fact the abelian group A is the derived group
of A ≀ C2.)

▶ Every abelian group A has an integral which is nilpotent of
class 2. Further, this integral can be chosen to be a p-group
if A is a p-group (for some prime p).

▶ Not every abelian group has finite index in some integral;
but there are several sufficient conditions for this: it holds
if A is free abelian, or a direct square. There are also a
number of necessary conditions.

▶ There are also conditions for A to have a finitely generated
integral.

Many, but not all, abelian groups have finite index in some
integral.
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Profinite groups

Profinite groups come with a natural topology. So we have to
distinguish between the abstract derived group (the subgroup
generated by commutators) and the topological derived group
(its closure). We will say that a profinite group has a profinite
integral if it is the topological derived group of a profinite
group K.

▶ A profinite group which has finite index in some integral
has a profinite integral.

▶ A finitely generated profinite group which has an integral
has a profinite integral.

▶ It is not true that an integrable profinite group has a
profinite integral.

The example for the last assertion is the unrestricted Cartesian
product of countably many copies of the dihedral group of
order 8.
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Varieties of groups

If V is a variety of groups, then the set of all integrals of groups
in V is a variety; indeed it is the product variety VA, where A is
the variety of abelian groups. We call this the integral of V.

Suppose that the variety V is finitely based (that is, defined by
a finite set of identities). Is its integral finitely based? Not in
general, but there is a sufficient condition for this.
We say that an identity w = 1 has gauge k if, whenever S is a
generating set for a group G closed under inverses, and the
identity w = 1 holds in the ball of radius k about the identity in
the Cayley graph, then it holds in G.

Theorem
If V is finitely based and its identities have finite gauge, then VA is
finitely based.
The varieties of abelian groups of exponent dividing m or
nilpotent groups of class at most c have gauge 1, but the variety
of metabelian groups has infinite gauge.
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Inverse group theory

After some time exploring integrals of groups, we turn to a
wide generalisation. Let F be a group-theoretic construction,
so that for any group G there is a group F (G). (We do not
assume any functorial properties of F , merely
isomorphism-invariance.) The inverse problem for F is: given
a group G, is there a group H such that G ∼= F (H)?

Thus, the question “Is G integrable?” is the inverse problem for
F (G) = G′.
Some inverse problems are trivial:
▶ For any group G, Z(G) is abelian; but every abelian group

is the centre of a group (namely itself).
▶ For any finite group G, the Fitting subgroup of G is

nilpotent; but every nilpotent finite group is the Fitting
subgroup of a finite group (namely itself).
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Around Eick’s theorem
A non-trivial result in inverse group theory (which took half a
century of effort by group theorists) is Eick’s theorem, which
we met earlier.

Theorem
The finite group G is the Frattini subgroup of some finite group if and
only if Inn(G) ≤ Φ(Aut(G)).

Question
For which group constructions F is it the case that
Inn(G) ≤ F (Aut(G)) is a necessary condition for a solution to the
inverse F -problem for G?

Proposition

A sufficient condition for the above is that the following both hold:
(a) F is monotonic (that is, A ≤ B implies F (A) ≤ F (B));
(b) if B is a normal subgroup of A then F (A/B) = F (A)B/B.

Note that this proposition does not cover the Frattini subgroup.
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Inverse Schur multiplier

Recall that the Schur multiplier M(G) of the finite group G is
the (unique) largest abelian group Z for which there exists a
group H with Z ≤ Z(H) ∩ H′ and H/Z ∼= G. There are of
course many other definitions.

Theorem
Every finite abelian group is the Schur multiplier of a finite group.

Proof.
A theorem of Schur says that

M(G × H) = M(G)× M(H)× (G ⊗ H).

Now G ⊗ H vanishes if G and H are perfect, so it is enough to
realise arbitrary cyclic groups as Schur multipliers of perfect
groups. Now Cn is the Schur multiplier of PSL(n, p) if p ≡ 1
(mod n) with a few small exceptions; and Dirichlet’s theorem
guarantees infinitely many such primes p.
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Inverse Schur for abelian p-groups

The Schur multiplier of an abelian p-group is an abelian
p-group. But not all abelian p-groups arise here.

Using the fact that, if a ≤ b, then Cpa ⊗ Cpb = Cpa , an easy
induction using Schur’s formula for direct products shows that,
if G is the direct product of cyclic groups of orders
pa1 , pa2 , . . . , par , where the ai are in nondecreasing order, then
M(G) is the direct product of r − 1 copies of Cpa1 , r − 2 copies of
Cpa2 , . . . , and one copy of Cpar−1 .
So, in particular, Cp × Cp is not the Schur multiplier of any
finite abelian group. (However, we note that C2 × C2 is the
Schur multiplier of a finite simple group, for example Sz(8).)
Another curious consequence of this classification is that a
finite abelian group is isomorphic to its Schur multiplier if and
only if it is the cube of a cyclic group.
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Derangements

A derangement is a permutation with no fixed points. A
century and a half ago, Camille Jordan showed that a finite
transitive permutation group of degree greater than 1 must
contain a derangement; later, Arjeh Cohen and I showed there
must be many derangements (at least a fraction 1/n of the
group elements, where n is the degree).

Let D(G) be the subgroup generated by derangements in the
transitive group G. A large majority of the transitive groups of
small degree have D(G) = G.
One class of groups which do not are Frobenius groups, those
in which the two-point stabiliser is trivial. Frobenius’ Theorem
shows that, in such a group, the identity and the derangements
form a regular normal subgroup, so G/D(G) is isomorphic to
the Frobenius complement, the point stabiliser. Frobenius
complements have a very restricted structure, which was
worked out by Zassenhaus in the 1930s.
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The derangement quotient

Question
Which finite groups occur as the derangement quotient G/D(G) in
transitive permutation groups G?

With Rosemary Bailey, Michael Giudici and Gordon Royle, I
looked at this question. Clearly every Frobenius complement
occurs as a derangement quotient. Are there any others? We
were able to find a few, for example the Klein group V4 and the
symmetric group S3. (All other groups of order less than 8 are
cyclic, and hence are Frobenius complements.) We found a few
more too.
A better approach came as a result of a talk I gave at the Ischia
Group Theory conference last year. Carlo Scoppola was in the
audience, and connected this question to . . .
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The Frobenius–Wielandt theorem

Frobenius’ Theorem has a purely group-theoretic statement.
Let H be a nontrivial proper subgroup of the finite group G,
and suppose that H ∩ Hg = 1 for all g /∈ H. Then the identity
together with the elements in no conjugate of H is a normal
subgroup, and H is a complement.

In this form the statement was generalised by Wielandt, and
Carlo knew this result well. Together we were able to link the
two approaches, find new examples of derangement quotients,
and put strong restrictions on the case where these have prime
power order.
The results can be found in
▶ R. A. Bailey, Peter J. Cameron, Norberto Gavioli and Carlo Maria

Scoppola, The derangements subgroup in a finite permutation
group and the Frobenius–Wielandt theorem, Proceedings in
Mathematics and Statistics, in press
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Cauchy numbers

Finding the subgroups of a finite group is a very important
problem in group theory. The inverse problem would be: given
a finite set S of finite groups, is there a finite group G
containing all the groups in S?

Of course, this is trivial: we can take their direct product!
We can make the problem more interesting by asking for the
smallest finite group containing them all. However, I will
discuss here a different variation of the question.
Cauchy’s Theorem states that a finite group has order divisible
by a prime p if and only if it contains a subgroup isomorphic to
Cp. (This is not how it is usually stated, of course!)
So let us say that the positive integer n is a Cauchy number if
there is a finite set S(n) of finite groups with the property that a
finite group G has order divisible by n if and only if it contains
one of the groups in S(n) as a subgroup.
For example, 6 is a Cauchy number: a group with order
divisible by 6 must contain one of the groups {C6, S3, A4}.
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What are the Cauchy numbers?

Theorem
The positive integer n is a Cauchy number if and only if one of the
following is true:

▶ n is a prime power;
▶ n = 6;
▶ n = 2pa, where p is a Fermat prime greater than 3, and a > 1.

This can be found in the following paper:
▶ Peter J. Cameron, David Craven, Hamid Reza Dorbidi, Scott

Harper and Benjamin Sambale, Minimal cover groups, J. Algebra
660 (2024), 345–372; doi: 10.1016/j.jalgebra.2024.06.038



What are the Cauchy numbers?

Theorem
The positive integer n is a Cauchy number if and only if one of the
following is true:
▶ n is a prime power;

▶ n = 6;
▶ n = 2pa, where p is a Fermat prime greater than 3, and a > 1.

This can be found in the following paper:
▶ Peter J. Cameron, David Craven, Hamid Reza Dorbidi, Scott

Harper and Benjamin Sambale, Minimal cover groups, J. Algebra
660 (2024), 345–372; doi: 10.1016/j.jalgebra.2024.06.038



What are the Cauchy numbers?

Theorem
The positive integer n is a Cauchy number if and only if one of the
following is true:
▶ n is a prime power;
▶ n = 6;

▶ n = 2pa, where p is a Fermat prime greater than 3, and a > 1.
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Other domains

Other kinds of structure can be constructed from groups; this
gives rise to inverse group theory in other domains. I give two
examples, one old, one new.

The Cayley table of a group is a Latin square. How do we
recognise Latin squares which are Cayley tables? This was
answered by Michel Frolov in the 19th century.
A Latin square satisfies the quadrangle condition if, given any
two 2 × 2 subsquares, if the entries in corresponding positions
in three of their places are equal, then the entries in the fourth
positions are also equal.

Theorem
A Latin square is the Cayley table of a group if and only if it satisfies
the quadrangle condition.
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The commuting graph
The commuting graph of a finite group G is the graph with
vertex set G, in which x and y are joined if and only if xy = yx.
This was introduced by Brauer and Fowler in 1955, in their
seminal work on centralisers of involutions in finite simple
groups.

Which graphs are commuting graphs of groups?
In a very recent paper, V. Arvind, Xuanlong Ma, Natalia
Maslova and I gave a quasi-polynomial time algorithm to
answer this question (and produce such a group, if the answer
is yes).
We also conjectured that, if we restrict to perfect graphs, there
is a polynomial-time algorithm. (But we do not know exactly
which groups have the property that the commuting graph is
perfect.)
▶ V. Arvind, P. J. Cameron, X. Ma and N. Maslova, Aspects of the

commuting graph, J. Algebra, in press; doi:
10.1016/j.jalgebra.2025.07.020
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. . . for your attention.


