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I am grateful to Jodo for many things, including
» introducing me to many beautiful parts of Portugal;
» introducing me to many beautiful mathematical problems;

» masterminding this beautiful conference.
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The putto on my title slide announces a good maxim for
mathematicians. Our subject derives much of its power from its
abstract nature; the results we prove can be applied to many
different areas.

But it is not quite so simple.

There is a line between the abstract and the concrete, and any
particular piece of mathematics can be positioned somewhere
on that line.

And more seriously, there may be room for considerable
disagreement about where to put it.

In the interview for my postdoctoral fellowship in Oxford in
1971, I was asked about some discussions I had had with Don
Taylor about a configuration of points in 23-dimensional
Euclidean space (a subset of the Leech lattice). We thought that
this was extremely concrete. But the committee (mostly
non-mathematicians) were so impressed that somebody could
think in 23 dimensions that I got the position.
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A mathematician, like a painter or poet, is a maker of
patterns ... Beauty is the first test; there is no place in
the world for ugly mathematics.

G. H. Hardy, A Mathematician’s Apology

... the heart of the poem is given to the concrete, and
it is in this direction that the poem goes. This is the
diametric opposite of the ping-pong of mathematics,
in which the last shot is always towards the abstract.

Ron Aharoni, Mathematics, Poetry and Beauty

I am not so sure, however.
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Groups, then rings; or rings, then groups?

I have always taken the view that fewer axioms don’t mean
easier to understand for a beginner.

Rings are fairly concrete objects, since there is a prototype or
exemplar, the ring of integers, with which all our students are
familiar. Once they have mastered an axiomatic system with
the integers to guide them, we can make things more abstract,
by stripping away axioms, to study groups, and then maybe
semigroups.

If you begin with groups, there is no natural exemplar.



Abstract or concrete? Road Closure

Abstract

A permutation group G on (2 has the Road Closure Property if
no orbital graph for G can be disconnected by deleting the
edges in a block of imprimitivity for G in its action on edges.

Concrete
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This question is related to the most important question in the
philosophy of mathematics: “Discovered or invented?”. These
questions are not equivalent, but a definitive answer to one
would have implications for the other.

Mathematics becomes more concrete as it moves from
mathematician to physicist, engineer, economist, etc. Also as it
moves from general to particular. For example, “A group
having exactly 59 subgroups” is surely more abstract than “The
alternating group on 5 letters”, although they are exactly
equivalent.
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God said, “Let there be light,” and light came into existence,
perhaps in a rather undefined form; it takes its specifics
(frequencies and intensitites) from the objects emitting or
reflecting it. Then it can create the visible universe in the eye of
the beholder.

A mathematician, at the start of a lecture, says “Let G be a
group,” and a group is called into existence in the minds of the
listeners, in a rather undefined form at first; but as the lecture
proceeds, the group takes on more specific properties, and
perhaps by the end of the lecture it has become a single group,
or a narrowly specified class of groups.
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Talk outline

My talk will consist of a series of examples to illustrate the
points. Questions are welcome, so it may be that I don’t cover
everything. The topics will be

» the random graph and Zermelo-Fraenkel set theory,
» a problem about derangements,
» the ADE Coxeter-Dynkin diagrams.

I will start each new section by showing you a picture of Evora,
so if you have lost the thread you can come back in at that
point.
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Zermelo-Fraenkel set theory is highly abstract, since it is an
axiom system for set theory which is the most usual basis for
all of mathematics.
The countable random graph was a discovery of Erd6s and
Rényi. There is a graph R with the following remarkable
property:
If you take a countable set of vertices, and for each pair of
vertices, choose independently at random (for example, by
tossing a coin) whether this pair are joined by an edge or
not. Let X be the resulting random graph. Then X is almost
surely isomorphic to R (that is, P(X = R) = 1).

This already much more concrete than ZF set theory (although
it is a non-constructive existence proof of R, a fairly abstract
idea). But it can be made more concrete still. Independently of
Erd6s and Rényi, Rado constructed a graph R as on the next
slide.



Rado’s construction

Rado defined his graph as follows. Let IN be the set of natural
numbers (including 0). Rado’s graph has vertex set IN. The rule
for joining i and j is as follows. Suppose that i < j (as we can
always do). Now express j in base 2. If the ith digit is 1, we join
i to j, otherwise not.



Rado’s construction

Rado defined his graph as follows. Let IN be the set of natural
numbers (including 0). Rado’s graph has vertex set IN. The rule
for joining i and j is as follows. Suppose that i < j (as we can
always do). Now express j in base 2. If the ith digit is 1, we join
i to j, otherwise not.

Thus, for example, 0 is joined to all odd numbers; 1 is joined to
0 and to all numbers congruent to 2 or 3 (mod 4).



Rado’s construction

Rado defined his graph as follows. Let IN be the set of natural
numbers (including 0). Rado’s graph has vertex set IN. The rule
for joining i and j is as follows. Suppose that i < j (as we can
always do). Now express j in base 2. If the ith digit is 1, we join
i to j, otherwise not.

Thus, for example, 0 is joined to all odd numbers; 1 is joined to
0 and to all numbers congruent to 2 or 3 (mod 4).

The connection is as follows:



Rado’s construction

Rado defined his graph as follows. Let IN be the set of natural
numbers (including 0). Rado’s graph has vertex set IN. The rule
for joining i and j is as follows. Suppose that i < j (as we can
always do). Now express j in base 2. If the ith digit is 1, we join
i to j, otherwise not.

Thus, for example, 0 is joined to all odd numbers; 1 is joined to
0 and to all numbers congruent to 2 or 3 (mod 4).

The connection is as follows:

Theorem
Rado’s graph is isomorphic to R.
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According to the downward Lowenheim-Skolem Theorem, if a
set of first-order sentences in a countable language has a model,
then it has a countable model. So, if ZF is consistent (as we all
hope!), it has a countable model. This is despite the fact that a
theorem of ZF is the existence of uncountable sets! This is the
Skolem paradox, which I am not going to resolve here.

Now the language of ZF has a single binary relation, €
(membership). So a model is a directed graph satisfying a
rather complicated set of axioms.

Theorem
If we take a countable model of ZF, and ignore the directions on the
edges, we obtain the random graph R.

So the abstract touches the very concrete (Rado’s construction).
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The proof of the last theorem uses by no means all of the ZF
axioms. The most crucial axiom is the Axiom of Foundation.
Other axioms, such as the axioms of Infinity and Choice are not
required.

In particular, if we take Rado’s graph, and direct the edges
from smaller to larger, we obtain a model of hereditarily finite
set theory (obtained by replacing the Axiom of Infinity by its
negation): all sets are finite, and all their members are finite,
and so on all the way down.

The sequel to this story is that I had a project student at St
Andrews, Bea Adam-Day, who was fascinated by this story,
and decided to do a project on what graphs are obtained if we
replace the crucial Axiom of Foundation (forbidding infinite
descending chains under membership) by the so-called
Anti-Foundation Axiom. She did a good project, and then
during her PhD at the University of Leeds, she and two fellow
students essentially solved the problem completely.
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This is an ongoing project with Jodo Aratjo, Francesco Matucci,
and others.
Let F be an operation taking groups to groups (1ot necessarily a
functor). The problem of inverse group theory is:
Given a group H, does there exist a group G such that
F(G) = H? If so, can we describe all such groups?

Example Suppose that F(G) is the derived group G’ (the
subgroup generated by commutators). A group G with G’ = H
is called an integral of H.

Scandalously, we do not even know whether the computational
problem of deciding whether a finite group is integrable is even
decidable, let alone have a good estimate for its complexity!
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I have always felt that permutation groups are more “concrete”
than abstract groups. The purpose of a group is to act on
something, and I believe that there are things to be learned
from the interaction of the group with its operand.

One of the topics in inverse group theory arises from
Frobenius’ theorem, which can be stated in two ways, which
are entirely equivalent, but one is more concrete than the other.

Theorem

» Let G be a finite transitive permutation group. Suppose that the
stabiliser of any point is non-trivial, but the stabiliser of any two
points is trivial. Then the identity and the derangements
(fixed-point-free elements) in G form a reqular normal subgroup,
and the point stabilisers are complements.

» Let G be a finite group with a subgroup H such that H # 1 but
HNHE =1forall g & H. Then H has a normal complement.
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A few years ago, inspired by work of H. Zantema in number
theory, Rosemary Bailey, Michael Giudici, Gordon Royle and I
looked at the more general question. Let G be a finite transitive
permutation group, and let D(G) be the subgroup generated by
the derangements in G. Which groups can arise as G/D(G)?
(This fits well our paradigm of inverse group theory.)

We found that the vast majority of transitive groups have

D(G) = G. Of course, if G is a Frobenius group, then D(G) is
the Frobenius kernel, and the quotient is the Frobenius
complement. The structure of Frobenius complements is
known very precisely following work of Zassenhaus.

We wondered at first whether every derangement quotient is
isomorphic to a Frobenius complement, but found a few
examples where this was not the case.
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Unbekown to me (to my shame), Helmut Wielandt had proved
a nice generalization of Frobenius’ theorem, and thus defined
what are called Frobenius-Wielandt complements, or
FW-complements.

Moreover, Carlo Scoppola had worked on these things, and
come to a good understanding of which groups of prime power
order could arise.

Last year, at the Ischia Group Theory Conference, I mentioned
our work, and in later discussions with Carlo and (via him)
Norberto Gavioli, we reached the conclusion that the two
approaches were almost exactly equivalent (not quite, for
rather technical reasons), but that Carlo’s work gave us many
more examples of derangement quotients which are p-groups.
The general problem of determining all derangement quotients
is still open.
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This relates to a question raised by Vladimir Arnold as a
“modern-day Hilbert problem” in an AMS symposium on the
Hilbert problems in the 1970s.

Lie algebras form a somewhat abstract subject. They are the
structures which naturally live on the tangent space at the
identity of a Lie group, a group which is also a manifold, such
that the multiplication and inversion are continuous. These
groups are widely used in theoretical physics, and they are best
studied via their Lie algebras.

The classification of finite-dimensional simple Lie algebras over
the complex numbers was achieved by Cartan and Killing in
the early 20th century. It turns out to reduce to a very concrete
problem.
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A Cartan subalgebra of a Lie algebra is a nilpotent
self-normalising subalgebra. For simple Lie algebras over C,
this subalgebra is abelian (the Lie bracket is trivial on it), but
has a natural Euclidean inner product; it also contains a finite
set of vectors called a root system, the roots being eigenvectors
of the adjoint transformation induced by elements outside.
The root system S has the properties

» ifv e S, thencv € Sifand only if c = £1;

» forany v,w € S, 2(v.w)/(v.v) is an integer (this is the
crystallographic condition;

» the reflection in the hyperplane perpendicular to any one
of its vectors maps S to itself.
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Classification of root systems

The method I describe is not the original one but I think it is
conceptually simpler.

It is clear from the definition that the roots of fixed length in a
root system form a root system in their own right. So as a first
step we assume all roots have the same length, which we take
to be v/2. Then the inner product of two independent roots is in
{0,£1}, so they make angles 90°, 60° or 120°.

Moreover, we can choose a basis such that all inner products
are non-positive.

The Gram matrix of inner products of this set thus has the form
2] — A, where A is a symmetric 0, 1-matrix, hence the adjacency
matrix of a graph whose greatest eigenvalue is less than 2.
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The other root systems (B, C;, G2 and F4) can now be found by
solving an easy puzzle involving putting together scaled copies
of direct sums of these.
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The ADE diagrams are ubiquitous in mathematics, involved in
the McKay correspondence (connecting them with the rotation
groups in Euclidean 3-space, viz. cyclic, dihedral, tetrahedral,
octahedral and icosahedral groups), cluster algebras,
singularity theory, algebras of finite representation type, locally
flat spacetimes, and so on. Arnold’s question was to explain the
correspondences between these many occurrences.

My own first involvement with them was in the paper with
Jean-Marie Goethals, Jaap Seidel, and Ernie Shult, where we
settled a conjecture of Alan Hoffman by finding the graphs
with least eigenvalue —2. This is not the dual of graphs with
greatest eigenvalue 2 (there are many such graphs), but the
ADE structures are used in the proof (we also gave a new proof
of the classification).
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At the time of his death a few years ago, John McKay and his
research assistant Yang He were writing a book about all things
ADE. Yang took over the project and recruited Pierre Dechant
and me to join.

The book, ADE: Patterns in Mathematics will be published by
Cambridge University Press in the London Mathematical
Society Lecture Note Series later this month. (It is now
available for pre-order.)

It is the first book in the series not to have a plain blue cover:
the publisher and the LMS agreed to put the ADE diagrams on
the cover.
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