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The Shrikhande graph

In 1959, S. S. Shrikhande proved the following theorem:

Theorem
Let n be an integer greater than 1, and let G be a graph which has the
same spectrum as the line graph of Kn,n. If n ̸= 4, then G is
isomorphic to L(Kn,n). If n = 4, there is just one further graph (up to
isomorphism).
The one further graph is the Shrikhande graph. I am going to
show you six different constructions of the Shrikhande graph,
using six different areas of discrete mathematics.
The Shrikhande graph is strongly regular, with parameters
(16, 6, 2, 2). This means that
▶ it has 16 vertices;
▶ it has valency 6;
▶ any two vertices, adjacent or not, have 2 common

neighbours.
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Six constructions

The six constructions of the graph are as follows:

a direct construction, based on the uniqueness proof;

a Cayley graph for Z4 × Z4, where Z4 is the cyclic group
of order 4;

the complement of the Latin square graph of the Cayley
table of Z4;

a regular map on the torus;

embedded in the exceptional root system E7;

obtained from L(K4,4) by Seidel switching.
I will say a bit about all these areas as we pass. Each new area
will be introduced by a picture of Kerala, God’s own country.
This material can be found in the forthcoming book on the
Shrikhande graph by Aparna Lakshmanan S., Ambat
Vijayakumar, and me.
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Construction, uniqueness, automorphisms
Let G be a graph with the same spectrum as L(K4,4). Then G is
strongly regular with parameters (16, 6, 2, 2). So the
neighbourhood of a vertex induces a graph of valency 2, which
is either two triangles or a hexagon.

It is not hard to show that the same possibility holds for all
vertices, and if all neighbourhoods are 2K3 then G is L(K4,4). So
we can assume all neighbourhoods are C6.
We start at a vertex ∗ and work our way out. Let H denote a
hexagon. Then at the first level we find the six neighbours of ∗
identified with the vertices of H, together with all the edges.
There are 15 pairs of vertices in H. Pairs distance 2 already have
their two common neighbours, so each of the other nine pairs
(six edges and three long diagonals) must have one further
common neighbour.
This gives us 1 + 6 + 9 = 16 vertices, so we have all. The 9
vertices can be represented as vxy where xy is an edge or long
diagonal of H; and we only need to determine their adjacencies
edges among these nine vertices.
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Using the fact that all neighbourhoods are C6, it can be seen that

▶ if xy and ab are edges of H, then vxy and vab are joined if
and only if xy and ab are 2 steps apart in H;

▶ if xy is an edge annd ab a long diagonal, vxy and vab are
joined if and only if xy and ab intersect;

▶ if xy and ab are long diagonals, then vxy and vab are not
joined.
This proves the uniqueness, but also gives us some
information.

Since the construction looks the same from any vertex, the
graph is vertex-transitive.
Moreover, since it has the symmetries of the hexagon H, the
stabiliser of a vertex is the dihedral group of order 12.
Hence, by the Orbit-Stabilizer Theorem, the automorphism
group of the Shrikhande graph has order 16 · 12 = 192.
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A Cayley graph

Cayley graphs form an important class of graphs, which
(almost from their definition) are vertex-transitive.

Let A be the subgroup of Z3
4 consisting of all triples (x, y, z)

with x + y + z = 0. Then A is isomorphic to Z2
4; but for the next

construction it is convenient to describe it in this form.
The vertex set of our graph G is the group A. We join
v = (x, y, z) to v′ = (x′, y′, z′) if v′ = v + s, where s is in the
following set:

S = {(1,−1, 0), (−1, 1, 0), (0, 1,−1), (0,−1, 1), (−1, 0, 1), (1, 0,−1)}.

Since S is closed under taking inverses, the graph is undirected.
(If v′ = v + s, then v = v′ − s.) Clearly it has valency 6. The fact
that any two vertices have two common neighbours requires
some checking.
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We can see from this construction that the chromatic number is
4, as follows. Let us use e and o for an even (resp. odd) member
of Z4. Then the vertex set of G can be divided into four sets as
follows:

{(e, e, e)}, {(e, o, o)}, {(o, e, o)}, {(o, o, e)}.

The first set is a subgroup of A, and the other three are its
cosets.
It is clear that edges join vertices in different ones of these
subsets; so each of the four sets is independent, and we have a
4-colouring of the graph.
If there were a colouring with three colours, there would have
to be an independent set of size at least 6, and it is easy to see
that no such set exists.
Also, the neighbourhood of a vertex is a hexagon, so there is no
4-clique. Thus, the graph is not weakly perfect.
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to be an independent set of size at least 6, and it is easy to see
that no such set exists.

Also, the neighbourhood of a vertex is a hexagon, so there is no
4-clique. Thus, the graph is not weakly perfect.
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Latin squares
Shrikhande was one of the three Euler spoilers.

So it is fitting that his graph is connected with Latin squares.
A Latin square is an n × n array with entries from an alphabet
of size n, such that each symbol occurs once in each row and
once in each column.
Latin squares are an active topic of research, with applications
from universal algebra to design of experiments in statistics.
A Latin square gives us a Latin square graph, whose vertices
are the cells of the array, two vertices joined if they lie in the
same row or the same column or contain the same symbol.
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The Latin square graph from a Latin square of order n is
strongly regular, with parameters (n2, 3(n − 1), n, 6). For n = 4,
this reads (16, 9, 4, 6).

Now it can be shown that the complement of such a graph is
strongly regular with parameters (16, 6, 2, 2) by easy
inclusion-exclusion arguments.
There are two Latin squares of order 4, up to the obvious notion
of isomorphism:

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

The first is the Cayley table of Z4; the second is the Cayley
table of Z2 × Z2 (the two groups of order 4).
The complements of their Latin square graphs are the
Shrikhande graph and L(K4,4).
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An application

Two Latin squares are orthogonal if, when they are
superimposed, every ordered pair of symbols occurs in just one
cell.

1 2 3
2 3 1
3 1 2

,
1 2 3
3 1 2
2 3 1

→
11 22 33
23 31 12
32 13 21

↔
Aα Bβ Cγ

Bγ Cα Aβ

Cβ Aγ Bα

This shows why Euler called a pair of orthogonal Latin squares
a Graeco-Latin square.
Euler had conjectured that orthogonal Latin squares exist if and
only if n is not congruent to 2 (mod 4). This was refuted by
Bose, Shrikhande and Parker who showed that they exist for all
n except 2 and 6.
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A set of mutually orthogonal Latin squares of order n has
cardinality at most n − 1; it is called complete if it meets this
bound. The deficiency of a set of MOLS is how far it falls short
of the bound.

It follows from Shrikhande’s theorem that a set of Latin squares
of deficiency 2 can be extended to a complete set provided the
order is not 4. For n = 4, the Cayley table of (Z2)2 can be
extended to a complete set but the Cayley table of Z4 cannot.
Later it was shown by Bruck and Bose that there is a function f ,
so that f (n) is about n1/4, such that a set of MOLS of order n
with deficiency at most f (n) can be extended to a complete set.
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On the torus
Although it has chromatic number 4, the Shrikhande graph
cannot be drawn in the plane.

For it has 16 vertices and 48 edges; in an embedding, each edge
would lie in two faces, and each face would have at least three
edges, so there would be at most 32 faces. But 16 − 48 + 32 = 0,
so Euler’s formula for plane embeddings, V − E + F = 2,
would be contradicted if there were a plane embedding.
However, it can be embedded in the torus:
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The arrows at the side show the identifications to be made.
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This is actually a regular map.

In a cellular embedding of a graph in a surface, a flag is a
mutually incident vertex-edge-face triple. It is easy to see that
the group of map automorphisms (graph automorphisms
preserving the faces), the stabilizer of a flag is trivial. (If you fix
a flag, you fix the other vertex on the edge, the other face
bounded by the edge, and thus the other edges incident with
that vertex and face; working outward we see that everything
is fixed.
So the most symmetric maps are those which are
flag-transitive, with the order of the group of map
automorphisms equal to the number of flags.
In the case of the Shrikhande graph, there are 192 flags, and 192
map automorphisms (for the faces are all the triangles in the
graph, so are invariant under all graph automorphisms); so it is
a regular map.
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The Dyck graph

The icosahedron can be drawn as a regular map on the sphere.
If we put a new vertex in the centre of each face, and join two
new vertices if their faces meet on an edge, we obtain the
dodecahedron, also as a regular map, which is dual to the
icosahedron.

We can make a similar construction with SG on the torus. Put a
new vertex in the centre of each triangular face, and join two
new vertices if their faces meet in an edge.
We obtain a graph dual to the Shrikhande graph, called the
Dyck graph, discovered in the 1880s. It has 32 vertices and 16
hexagonal faces; it is regular with degree 3 and girth 6. Its
automorphism group is the same as that of the Shrikhande
graph, of order 192.
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Graphs with least eigenvalue −2

The adjacency matrix A of the Shrikhande graph satisfies
A2 = 4I + 2J. So its eigenvalues are 6, 2 and −2, with
multiplicities 1, 6 and 9.

Thus, Shrikhande’s theorem fits into a large body of work in
the late 1950s and 1960s aimed at classifying graphs whose
adjacency matrix has least eigenvalue −2.
This was led by Alan Hoffman, who made a remarkable
conjecture:

If a graph G is connected, has least eigenvalue −2, and has
sufficiently large mininal degree, then it is a generalized line
graph.

I will explain what a generalized line graph is, how Hoffman’s
conjecture and more was proved, and the current state of the
art.
The proof came from an unexpected direction . . .
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Generalized line graphs

The line graph L(H) of a graph H is the graph whose vertex set
is the edge set of H, two vertices joined if (as edges of H) they
have a common vertex.

A cocktail party graph CP(n) is K2n with a 1-factor removed.
The data for a generalized line graph is a graph H with a
non-negative integer mv at each vertex v. The graph is the
disjoint union of the line graph of H and cocktail party graphs
CP(mv) for each v, where the vertices of CP(mv) are joined to all
vertices of L(H) which are edges of H containing v.
The next slide shows an example.
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The red part is the line graph L(G); the blue shows the added
cocktail party graphs.
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The red part is the line graph L(G); the blue shows the added
cocktail party graphs.



With Jean-Marie Goethals, Jaap Seidel and Ernie Shult, I was
able to prove a stronger version of Hoffman’s conjecture:

Theorem
A connected graph with least value −2 is either a generalized line
graph or is represented in the exceptional root system E8.

I sketch the proof. Let A be the adjacency matrix of such a
graph. Then A + 2I is positive semidefinite, so is the Gram
matrix of inner products of a set of vectors in Euclidean space.
Clearly these vectors all have length

√
2 and any two make an

angle 60◦ (if adjacent) or 90◦ (otherwise).
We close the system by adding the negatives of the vectors, and
adding those vectors forming a star with existing vectors (i.e. if
we have two vectors at an angle 60◦, we add the vectors
making angles 60◦ or 120◦ with both.
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The resulting set of vectors is star-closed, and hence is closed
under reflection in the hyperplane perpendicular to any of its
vectors. So it is a root system, a concept occurring in the theory
of simple Lie algebras and many other parts of mathematics.

The connected root systems with all roots of the same length
are given by the celebrated ADE classification. Since An ⊆ Dn+1
and E6 ⊆ E7 ⊆ E8, our graph is represented in either Dn or E8.
It is not hard to show that graphs represented in Dn are
precisely Hoffman’s generalized line graphs.
Since E8 is a finite object, there are only finitely many graphs
which it represents. So our theorem is much stronger than
Hoffman’s conjecture, since he only required that exceptions
had valenchy not too large.
The exceptions are not all classified, but all the regular graphs
represented in E8 have been determined. There are 187 of them
which are not line graphs.
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Later Hoffman proved that a connected graph with least
eigenvalue greater than −1 −

√
2 and sufficiently large valency

is a generalized line graph. Very recently, Acharya and Jiang
have improved our theorem a little bit by showing that all but
finitely many connected graphs with least eigenvalue greater
than −2.01980 . . . are generalized line graphs.

These results have various applications. Recently, for example,
Peter Sarnak gave an application of our theorem to the design
of waveguides.
For much more about the many and varied occurrences of the
ADE systems in different parts of mathematics, see my
forthcoming book ADE: Patterns in Mathematics, with
Pierre-Philippe Dechant, Yang-Hui He and John McKay.
In the book on the Shrikhande graph, we include an explicit
construction of this graph as a subset of the E7 root system.
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Seidel switching

Let G = (V, E) be a graph, and {A, B} a partition of V (we
allow one of the parts to be empty). The result of Seidel
switching of G with respect to the partition is obtained by
interchanging edges and non-edges between A and B, leaving
edges within either set unaltered.

Seidel used a modified adjacency matrix S(G) with entries 0 on
the diagonal, −1 for adjacency and +1 for non-adjacency. Now
Seidel switching replaces S(G) by DS(G)D, where D is a
diagonal matrix with diagonal entries ±1.
Seidel switching is an equivalence relation on graphs with a
given vertex set, partitioning the set of such graphs into
2(n−1)(n−2)/2 equivalence classes each of size 2n−1, called
switching classes.
Several other combinatorial objects are equivalent to switching
classes, including double covers of complete graphs, and sets of
lines through the origin in Euclidean space such that any two
make the same (supplementary) pair of angles.
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The switching class of SG
The Shrikhande graph lies in a particularly interesting
switching class, which also contains the line graph of K4,4, the
line graph of K6 with an isolated vertex, and the Clebsch graph
(a strongly regular graph with parameters (16, 10, 6, 6)).

It is the largest of the finitely many non-trivial switching classes
which have primitive automorphism groups in which all the
graphs have non-trivial automorphisms.
This gives us our final construction of SG: take the 4 × 4 square
lattice graph, and switch with respect to a diagonal set:

The picture shows a switching set in the 4 × 4 square lattice,
and a vertex neighbourhood in the switched graph (a 6-cycle).
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This has been a whistle-stop tour through several topics in
discrete mathematics. If you enjoyed it, you might like our
book:

. . . for your attention.
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