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Transitive groups and invariant partitions

This is my favourite set-up. Ω is a set, and G is a group of
permutations on Ω (bijective maps from Ω to Ω). The degree of
G is the cardinality of Ω.
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The action of G on Ω is transitive if, for any two points α and β
in Ω, there is an element g ∈ G which maps α to β.
A partition Π of Ω is invariant under G if elements of G map
parts of Π to parts of Π. If g maps α to β then it maps the part
containing α to the part containing β.
If G is transitive and Π is invariant under G, then all parts of Π
must have the same number of points: we say that Π is
uniform.
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A construction

In this situation, we can define two smaller permutation
groups, each acting transitively:

▶ G1, the group of permutations induced on a part of Π by
the subgroup of G fixing it;

▶ G2, the group of permutations induced on the set of parts
of Π by G.

Construction
Let Π be a uniform partition of Ω. Let G1 be a transitive permutation
group whose degree is the size of a part of Π, and G2 a transitive
permutation group whose degree is the number of parts of Π. Now
build a group G as follows: G is generated by
▶ permutations of Ω fixing every part of Π and acting on each part

as an element of G1;
▶ permutations moving the parts of Π around as elements of G2.

This group is the wreath product of G1 and G2, denoted by G1 ≀ G2.
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A theorem

Note that in this construction, Ω is bijective with Ω1 × Ω2.

The Krasner–Kaloujnine theorem asserts the following:

Theorem
Let G be a transitive permutation group on Ω, having an invariant
partition of Π. Let G1 be the group induced on a part of Π by its
setwise stabiliser, and G2 the group induced on the set of parts by G.
Then G is naturally embedded as a subgroup of G1 ≀ G2.
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The lattice of partitions

Let Π1 and Π2 be partitions. We say that Π1 refines Π2 if every
part of Π1 is contained in a part of Π2 (written Π1 ⪯ Π2).

This is a partial order, and in fact a lattice: infima or meets
(greatest lower bounds) and suprema or joins (least upper
bounds) exist. The infimum of two partitions is the partition
whose parts are all non-empty intersections of a part of the first
with a part of the second. The supremum is a little more
complicated to define but I will not need it.
The infimum and supremum of two partitions Π1 and Π2 are
denoted Π1 ∧ Π2 and Π1 ∨ Π2 respectively.
The partitions invariant under any group form a lattice.
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Commmuting partitions

Another structure on partitions comes from noting that each
partition Π is defined by an equivalence relation R; we will say
that partitions commute if the corresponding equivalence
relations do, in the sense that R1 ◦ R2 = R2 ◦ R1, where

R1 ◦ R2 = {(α, γ) : (∃β)(α, β) ∈ R1, (β, γ) ∈ R2}.

This notion is important in statistics since it means that the
factors corresponding to the two partitions are statistically
orthogonal, which makes the analysis much easier.



Distributive lattices

We will be interested in lattices that satisfy the distributive
laws, the following (equivalent) statements:

(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c), (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c).

The structure theorem for these asserts that any finite
distributive lattice Λ is embeddable in the Boolean lattice of
subsets of a set; more exactly, there is a poset (partially ordered
set) (P ,⊑) such that Λ is isomorphic to the lattice of down-sets
(sets closed downwards) of P .
In the other direction, P is the subset of join-indecomposable
elements of Λ (those which cannot be written as the join of
smaller elements).
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Distributive lattices and poset block structures

Now given a poset P , suppose that a set Ωp of size greater than
1 is associated with each point p ∈ P .

Let us suppose that we have a group Gp acting transitively on
Ωp for each p ∈ P. Then there is a construction called the
generalized wreath product, first described by Charles
Holland, which produces a permutation group G on the
Cartesian product Ω of the sets Ωp over p ∈ P. Unfortunately, it
is too complicated to describe here.
Note that, if P is a 2-element chain, then the g.w.p is just the
wreath product defined earlier, while if P is a 2-element
antichain then the g.w.p is the direct product.
Corresponding to each element λ ∈ Λ, the lattice of down-sets
in P , we have a partition Πλ of Ω; and these partitions
commute pairwise.
A structure like this (a distributive lattice of pairwise
commuting uniform partitions) is known to statisticians as a
poset block structure.



Distributive lattices and poset block structures

Now given a poset P , suppose that a set Ωp of size greater than
1 is associated with each point p ∈ P .
Let us suppose that we have a group Gp acting transitively on
Ωp for each p ∈ P. Then there is a construction called the
generalized wreath product, first described by Charles
Holland, which produces a permutation group G on the
Cartesian product Ω of the sets Ωp over p ∈ P. Unfortunately, it
is too complicated to describe here.

Note that, if P is a 2-element chain, then the g.w.p is just the
wreath product defined earlier, while if P is a 2-element
antichain then the g.w.p is the direct product.
Corresponding to each element λ ∈ Λ, the lattice of down-sets
in P , we have a partition Πλ of Ω; and these partitions
commute pairwise.
A structure like this (a distributive lattice of pairwise
commuting uniform partitions) is known to statisticians as a
poset block structure.



Distributive lattices and poset block structures

Now given a poset P , suppose that a set Ωp of size greater than
1 is associated with each point p ∈ P .
Let us suppose that we have a group Gp acting transitively on
Ωp for each p ∈ P. Then there is a construction called the
generalized wreath product, first described by Charles
Holland, which produces a permutation group G on the
Cartesian product Ω of the sets Ωp over p ∈ P. Unfortunately, it
is too complicated to describe here.
Note that, if P is a 2-element chain, then the g.w.p is just the
wreath product defined earlier, while if P is a 2-element
antichain then the g.w.p is the direct product.
Corresponding to each element λ ∈ Λ, the lattice of down-sets
in P , we have a partition Πλ of Ω; and these partitions
commute pairwise.

A structure like this (a distributive lattice of pairwise
commuting uniform partitions) is known to statisticians as a
poset block structure.



Distributive lattices and poset block structures

Now given a poset P , suppose that a set Ωp of size greater than
1 is associated with each point p ∈ P .
Let us suppose that we have a group Gp acting transitively on
Ωp for each p ∈ P. Then there is a construction called the
generalized wreath product, first described by Charles
Holland, which produces a permutation group G on the
Cartesian product Ω of the sets Ωp over p ∈ P. Unfortunately, it
is too complicated to describe here.
Note that, if P is a 2-element chain, then the g.w.p is just the
wreath product defined earlier, while if P is a 2-element
antichain then the g.w.p is the direct product.
Corresponding to each element λ ∈ Λ, the lattice of down-sets
in P , we have a partition Πλ of Ω; and these partitions
commute pairwise.
A structure like this (a distributive lattice of pairwise
commuting uniform partitions) is known to statisticians as a
poset block structure.



The main theorem
Our main theorem generalizes the Krasner–Kaloujnine
theorem.

Theorem
Suppose that G is a permutation group on Ω, which has a set of
invariant partitions forming a poset block structure; let P be the
corresponding poset.
Then it is possible to extract a group Gp for every p ∈ P such that G
is naturally embedded in the generalized wreath product of the groups
Gp over p ∈ P .

Two closing remarks:
1. There is some subtlety in the construction of the groups Gp;

the straightforward construction in the
Krasner–Kaloujnine theorem does not work.

2. We cannot weaken the hypotheses of the theorem. Even
deleting “distributive” in the definition of a poset block
structure (giving a more general class of objects called
orthogonal block structures in statistics) does not work.
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