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There has been a lot of work recently on graphs defined on
groups. This began with Cayley in the 19th century. To obtain a
Cayley graph, we choose a subset S of G which is
inverse-closed and doesn’t contain the identity, and join x to y if
xy~! € S. This group admits an action of G by right
multiplication.

Now Cayley graphs are a central object in mathematics: infinite
Cayley graphs are the basis of the theory of hyperbolic groups,
while finite Cayley graphs are a big topic in algebraic graph
theory.

My topic is a bit different. I am considering graphs where the
adjacency is defined purely in terms of group-theoretic
properties of G. These graphs admit the automorphism group
of G as automorphisms; in particular, G acts by conjugation.
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The commuting graph and others

The first example was the commuting graph, where x and y are
joined if xy = yx. Brauer and Fowler used this to prove an
important theorem which was perhaps the first step to the
Classification of Finite Simple Groups: they showed that there
are only finitely many finite simple groups with a given
involution centraliser.

Other examples include (with the joining rule in parentheses)

» the nilpotency graph ((x, y) nilpotent)
» the generating graph ((x,y) = G)

» the independence graph ({x,y} contained in an
independent generating set)

» the deep commuting graph (preimages of x and y
commute in every central extension of G)

and several others.
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What are we after?

I have three main aims with this project:

» We learn new things about groups (as Brauer and Fowler
did in 1955).

» We define old and new classes of groups, either by taking
two graph types and selecting the groups where they
agree, or by taking one type and selecting the groups for
which this graph lies in a well-studied class such as perfect
graphs.

» Sometimes we find beautiful graphs in this way. For
example, a semiregular bipartite graph on 385 vertices
with valencies 3 and 4 having diameter and girth 10 and
automorphism group M.

I have talked about some of this here before.
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I will talk about two projects I have been involved with,
considering digraphs defined on groups.

The first project was with three south Indian mathematicians,
Midhuna V Ajith, Mainak Ghosh, and Aparna Lakshmanan S,
and concerns the endomorphism digraph of a group. This is
part of a much wider context which I will discuss.

The second was with three north Indian mathematicians,
Rishabh Chakraborty, Rajat Kanti Nath and Deiborlang
Nongsiang, and concerns the Engel digraph. This is in a way
more specialised, but digs more deeply into the group theory.
The study of the undirected version (the Engel graph) is not
entirely new. It was first considered by Alireza Abdollahi in
Iran, and then by Andrea Lucchini and some of his coauthors
in Italy. However, our results on the directed version seem to
be new.
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Partial preorders

As you know, an equivalence relation is a reflexive, symmetric
and transitive relation.

Equivalence relations describe the orbits of a group action: the
three conditions in the definition are proved using the identity,
inverse and closure axioms for a group. (I would argue that
almost every equivalence relation we meet in practice arises
naturally from the orbit structure of a group action.)

What is the analogous thing for a monoid action? We lose the
inverse axiom, and so we lose the symmetric law.

So a partial preorder on a set X is a reflexive and transitive
relation on X. I will write x — y for a partial preorder, to
emphasize that it is a special kind of digraph (with a loop at
every vertex).
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Properties of partial preorders

Exercise

Let — be a partial preorder on X. Show that the sets

x7 = {y : x — y} are the basic open sets of a topology on X. Show
that, if X is finite, every topology on X arises in this way.

Exercise

Let — be a partial preorder on X. Define a relation = by x = y if

x — yand y — x. Show that = is an equivalence relation, and the
equivalence classes are partially ordered by —.

Partial preorders are sometimes called preferential arrangements;
you are asked to rank, say, politicians, but there are some
subsets which you are unable to order. Thus the equivalence
classes of = are called indifference classes.
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Comparability graph

The comparability graph of a partial preorder is the graph
obtained by deleting loops and ignoring directions, replacing
two oppositely-directed arcs by a single edge.

Proposition

The comparability graph of a finite partial preorder is perfect (that is,
every induced subgraph has clique number equal to chromatic
number).

For, given a partial preorder, there is a partial order with the
same comparability graph (simply put a total order on each
indifference class). A theorem of Mirsky asserts that
comparability graphs of partial orders are perfect.
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Power graph and directed power graph

These were defined (for semigroups) by Kelarev and Quinn in
around 2000. I will give the definition in a form that applies to
any type of algebra.

Let A be an algebra (in the sense of universal algebra). Define a
partial preorder on A by the rule that x — yify € (x).

If A has the property that (x) is the set of positive integer
powers of x (as semigroups and finite groups do), then we can
simply say x — v if y = x™" for some positive integer m; so the
partial preorder corresponds to the action of the multiplicative
monoid of positive integers on A.

Theorem

Let A be a finite group, — the partial preorder on A defined above,
and T its comparability graph. Then the preorder is determined, up to
isomorphism, by T'.

The preorder with loops deleted is the directed power graph of
A, and its comparability graph is the (undirected) power graph.
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The endomorphism digraph

The first of the new digraphs is the endomorphism digraph.
The definition again works for any algebra A.

Let M be the endomorphism monoid of A. The endomorphism
digraph of A is the orbit partial preorder of M on A (in other
words, x — y if there is an endomorphism in M which maps x
to y), thought of as a digraph by deleting the loops. The
endomorphism graph is the comparability graph (that is, we
ignore the directions on edges).

From our earlier discussion, we can observe three things:

Proposition

» The endomorphism graph of any algebra is perfect.

» If A is an abelian group, then the power graph is a spanning
subgraph of the endomorphism graph.

» If Ais a cyclic group, then the power graph is equal to the
endomorphism graph.
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An exercise

The second part of the above proposition holds because, in an
abelian group, the power maps f,, : x — x are
endomorphisms. This is not true for general groups. You might
enjoy the following exercise, if you have not seen it before:

Exercise
If the power maps f,, on a group G are endomorphisms for three
consecutive values of m, then G is abelian.

In particular, since fo and f; are (trivially) endomorphisms, we
recover the standard results that if either f, or f_; are
endomorphisms then G is abelian.
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Directed and undirected

We saw that the power graph of a group determines the
directed power graph up to isomorphism (though it does not
determine the group). This is not the case for the
endomorphism graph.

For example, let A; and A; be the two groups of order p> where
p is prime. For the elementary abelian group, the
automorphism group acts transitively on the non-identity
elements; so the endomorphism digraph is the complete
digraph on the non-identity elements together with the identity
as a sink, and the endomorphism graph is complete.

On the other hand, for the cyclic group, an element of order p?
can be mapped to any element; an element of order p can be
mapped to any element of order 1 or p. So again the
endomorphism graph is complete, but the endomorphism
digraph is not the same as for the elementary abelian group.
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For which groups does the undirected endomorphism graph
determine the directed endomorphism graph up to isomorphism?

For which groups does the (directed or undirected)
endomorphism graph determine the group up to isomorphism?

For which groups do the orbits of the automorphism group
coincide with the indifference classes of the endomorphism
preorder?

Investigate properties of the endomorphism graph such as clique
number and independence number.
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Cyclic groups

For cyclic groups, the (undirected or directed) endomorphism
graph coincides with the (undirected or directed) power graph,
which has been much studied. (In the directed power graph,

x — y if and only if y is a power of x.)

In this case, the undirected graph determines the directed
graph up to isomorphism.

Among many results known about this graph, I mention just
one. Let f(n) be the clique number of the power graph of C,,.

Theorem

¢(n) < f(n) < cp(n),
where ¢ is Euler’s function, and ¢ = 2.6481017597 . ...
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Commutators, nilpotent and Engel groups

On to Engel digraphs. Before discussing them, we need some
background.

The n-fold commutator of group elements is defined
recursively by

[x1,%2] = xl_lxz_lxpcz, (X1, .o, X1, %] = [[x1, ..., %5-1],x4] fOorn > 2.

Now a group is nilpotent if there exists k such that, for any
choice of x1,...,xx,1, we have [xq,...,xx,.1] = 1. The smallest
such k is called the nilpotency class.

A group is k-Engel if it satisfies [x, xy] = 1 for all x and y, where
[x,xy] = [x,y,...,y] with k occurrences of y. It is Engel if it is
k-Engel for some k.

Clearly a nilpotent group of class k is k-Engel. The converse is
false, but Zorn proved:

Theorem
A finite Engel group is nilpotent.
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The Engel digraph and the nilpotency graph

The Engel digraph of the finite group G has vertex set G, with
an arc x — y if [y, xx] = 1 for some k. The Engel graph is
obtained as usual by ignoring directions.

A related graph is the nilpotency graph, in which x and y are
joined if and only if (x, y) is nilpotent.

Theorem
The nilpotency graph of G is complete if and only if G is nilpotent.

The reverse direction is clear since a subgroup of a nilpotent
group is nilpotent.

For the forward direction, we note that if a group is not
nilpotent, then it contains a minimal non-nilpotent group as a
subgroup; Schmidt classified these groups, and showed that
each can be generated by two elements.
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A little more is true:
Theorem
For a finite soluble group G, the following are equivalent:
» G is nilpotent;
» the nilpotency graph of G is complete;
» the Engel graph of G is complete;
» the nilpotency and Engel graphs of G are equal.

Moreover, the Engel digraph of G has no single arcs if and only if G is
nilpotent.

This requires a little more knowledge of Schmidt’s minimal
non-nilpotent groups. The Fitting subgroup F(G) of a finite
group G is the (unique) maximal normal nilpotent subgroup. If
G is not nilpotent, then F(G) # G, and using Schmidt’s result,
we can find a directed arc from a vertex in F(G) to a vertex
outside F(G).
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Sources, sinks and dominating vertices

In a graph, a vertex v is dominating if it is joined to all other
vertices. In a digraph, x is a source if x — y forall y # x; itis a
sinkif y — x forally # x.

Both sources and sinks are dominating in the undirected graph;
the converse is false in general, but true for the Engel digraph:

Theorem
Let G be a finite group.
» The set of sinks in the Engel digraph is the hypercentre of G, the
last term in the upper central series.
» The set of sources in the Engel digraph is the Fitting subgroup
of G.
» The set of dominating vertices in the Engel graph is the Fitting
subgroup of G.

The first and second parts are due to Baer; the third to
Abdollahi.



Some questions

An example of a group whose directed Engel graph is not a
partial preorder is the symmetric group Ss. We have
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Some questions

An example of a group whose directed Engel graph is not a
partial preorder is the symmetric group Ss. We have
(1,2)(3,4) — (1,2,3) — (1,2),and also (1,2) — (1,2)(3,4),
but (1,2) 4 (1,2,3) and (1,2,3) 4 (1,2)(3,4).

Question

» For which finite groups is the directed Engel graph a partial
preorder?

» Does the theorem characterising finite nilpotent groups hold
without the assumption of solubility?

» Which groups are characterised up to isomorphism by their
Engel digraphs?

» Which groups have the property that every single arc in the
Engel digraph has its initial vertex in the Fitting subgroup?
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An application

The Engel digraph can be used to show:

Proposition
The set of dominating vertices in the nilpotency graph of a finite
group G is the hypercentre of G.

If x is joined to all elements of G in the nilpotency graph, then
y — xforally € G, and so x is a sink in the Engel digraph, and
it lies in the hypercentre by Baer’s result.

Conversely, if x is in the hypercentre, then (x, y) is nilpotent for
all y € G, by induction on the length of the lower central series
(using the fact that, if Z is a subgroup in the centre of G, and
G/Z is nilpotent, then G is nilpotent).
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for your attention!



