

# Ramsey's theorem and topological dynamics

Peter J. Cameron



Research day, 22 January 2026

## Ramsey's theorem

Frank Ramsey proved his theorem in 1930. It is often stated as the slogan “complete disorder is impossible”.

## Ramsey's theorem

Frank Ramsey proved his theorem in 1930. It is often stated as the slogan “complete disorder is impossible”.

If I have  $n$  people at a party, any two of them either friends or strangers, and if  $n \geq 6$ , then there will be either three mutual friends or three mutual strangers. (This is the **party problem**).

## Ramsey's theorem

Frank Ramsey proved his theorem in 1930. It is often stated as the slogan “complete disorder is impossible”.

If I have  $n$  people at a party, any two of them either friends or strangers, and if  $n \geq 6$ , then there will be either three mutual friends or three mutual strangers. (This is the **party problem**).

Ramsey generalised this in three ways:

## Ramsey's theorem

Frank Ramsey proved his theorem in 1930. It is often stated as the slogan “complete disorder is impossible”.

If I have  $n$  people at a party, any two of them either friends or strangers, and if  $n \geq 6$ , then there will be either three mutual friends or three mutual strangers. (This is the **party problem**).

Ramsey generalised this in three ways:

- ▶ there might be more than two possible relations between two people;

## Ramsey's theorem

Frank Ramsey proved his theorem in 1930. It is often stated as the slogan “complete disorder is impossible”.

If I have  $n$  people at a party, any two of them either friends or strangers, and if  $n \geq 6$ , then there will be either three mutual friends or three mutual strangers. (This is the **party problem**).

Ramsey generalised this in three ways:

- ▶ there might be more than two possible relations between two people;
- ▶ we might be looking for a set larger than 3 of people all satisfying the same pairwise relation;

## Ramsey's theorem

Frank Ramsey proved his theorem in 1930. It is often stated as the slogan “complete disorder is impossible”.

If I have  $n$  people at a party, any two of them either friends or strangers, and if  $n \geq 6$ , then there will be either three mutual friends or three mutual strangers. (This is the **party problem**).

Ramsey generalised this in three ways:

- ▶ there might be more than two possible relations between two people;
- ▶ we might be looking for a set larger than 3 of people all satisfying the same pairwise relation;
- ▶ and finally, instead of a relation between two people, it might be a relation between  $k$  people for some  $k$  (so that we are dividing the set of  $k$ -element subsets into a fixed number  $r$  of classes).

## Ramsey's theorem

Frank Ramsey proved his theorem in 1930. It is often stated as the slogan “complete disorder is impossible”.

If I have  $n$  people at a party, any two of them either friends or strangers, and if  $n \geq 6$ , then there will be either three mutual friends or three mutual strangers. (This is the **party problem**).

Ramsey generalised this in three ways:

- ▶ there might be more than two possible relations between two people;
- ▶ we might be looking for a set larger than 3 of people all satisfying the same pairwise relation;
- ▶ and finally, instead of a relation between two people, it might be a relation between  $k$  people for some  $k$  (so that we are dividing the set of  $k$ -element subsets into a fixed number  $r$  of classes).

In each case, Ramsey guarantees that, if the party is large enough, then we can find the set we are looking for.

## Ramsey theory

Many authors (including Paul Erdős and his collaborators) have generalised this theorem, and turned it into a theory. My talk is about one aspect of that theory.

## Ramsey theory

Many authors (including Paul Erdős and his collaborators) have generalised this theorem, and turned it into a theory. My talk is about one aspect of that theory.

I am talking about **relational structures**; one of these is a set with certain specified relations on it. (Think graphs, ordered sets, etc. – but we may have several relations, e.g. a graph and an order on the same set.)

## Ramsey theory

Many authors (including Paul Erdős and his collaborators) have generalised this theorem, and turned it into a theory. My talk is about one aspect of that theory.

I am talking about **relational structures**; one of these is a set with certain specified relations on it. (Think graphs, ordered sets, etc. – but we may have several relations, e.g. a graph and an order on the same set.)

We are interested in classes of such structures (with the same named relations). We always assume that our classes are **hereditary**, that is, closed under taking **induced substructures** (formed by picking a subset and all instances of the relation within it). For example, if we are dealing with graphs, we take a set of vertices, and all the edges it contains.

## Ramsey classes

Guided by Ramsey's theorem, we say that a class  $\mathcal{C}$  of finite structures is a **Ramsey class** if, for any  $A, B \in \mathcal{C}$ , there is a  $C \in \mathcal{C}$  such that, if the embeddings of  $A$  into  $C$  are coloured red and blue, then there is a copy of  $B$  in  $C$  all of whose embedded  $A$ s have the same colour.

## Ramsey classes

Guided by Ramsey's theorem, we say that a class  $\mathcal{C}$  of finite structures is a **Ramsey class** if, for any  $A, B \in \mathcal{C}$ , there is a  $C \in \mathcal{C}$  such that, if the embeddings of  $A$  into  $C$  are coloured red and blue, then there is a copy of  $B$  in  $C$  all of whose embedded  $A$ s have the same colour.

In the party problem,  $A$  is a set of size 2,  $B$  a set of size 3, and we can take  $C$  to be a set of size 6.

## Fraïssé classes

In 1949, Roland Fraïssé asked himself: for which classes  $\mathcal{C}$  of finite structures is there a countably infinite structure  $M$  such that

- ▶  $\mathcal{C}$  is precisely the class of finite structures embeddable in  $M$ ;

## Fraïssé classes

In 1949, Roland Fraïssé asked himself: for which classes  $\mathcal{C}$  of finite structures is there a countably infinite structure  $M$  such that

- ▶  $\mathcal{C}$  is precisely the class of finite structures embeddable in  $M$ ;
- ▶  $M$  has maximum symmetry, in the sense that any isomorphism between finite substructures of  $M$  can be extended to an automorphism of  $M$ .

## Fraïssé classes

In 1949, Roland Fraïssé asked himself: for which classes  $\mathcal{C}$  of finite structures is there a countably infinite structure  $M$  such that

- ▶  $\mathcal{C}$  is precisely the class of finite structures embeddable in  $M$ ;
- ▶  $M$  has maximum symmetry, in the sense that any isomorphism between finite substructures of  $M$  can be extended to an automorphism of  $M$ .

He was able to give a precise characterisation of these classes; they are now called **Fraïssé classes**, and the structure  $M$  is the **Fraïssé limit** of  $\mathcal{C}$ . (It is uniquely determined by  $\mathcal{C}$ .)

## Fraïssé classes

In 1949, Roland Fraïssé asked himself: for which classes  $\mathcal{C}$  of finite structures is there a countably infinite structure  $M$  such that

- ▶  $\mathcal{C}$  is precisely the class of finite structures embeddable in  $M$ ;
- ▶  $M$  has maximum symmetry, in the sense that any isomorphism between finite substructures of  $M$  can be extended to an automorphism of  $M$ .

He was able to give a precise characterisation of these classes; they are now called **Fraïssé classes**, and the structure  $M$  is the **Fraïssé limit** of  $\mathcal{C}$ . (It is uniquely determined by  $\mathcal{C}$ .)

For example, finite ordered sets and finite graphs form Fraïssé classes; their Fraïssé limits are respectively the rational numbers (as ordered set) and the Erdős–Rényi **random graph**.

## Structure of Ramsey classes

In the 1980s, serious research began on Ramsey classes. Jarik Nešetřil proved:

## Structure of Ramsey classes

In the 1980s, serious research began on Ramsey classes. Jarik Nešetřil proved:

### Theorem

- ▶ *Any Ramsey class is a Fraïssé class (and so has a Fraïssé limit).*

# Structure of Ramsey classes

In the 1980s, serious research began on Ramsey classes. Jarik Nešetřil proved:

## Theorem

- ▶ Any Ramsey class is a Fraïssé class (and so has a Fraïssé limit).
- ▶ If the class is not “trivial”, i.e. there are at least some relations in the language, then the objects in the class are **rigid** (they have no symmetry apart from the identity).

# Structure of Ramsey classes

In the 1980s, serious research began on Ramsey classes. Jarik Nešetřil proved:

## Theorem

- ▶ Any Ramsey class is a Fraïssé class (and so has a Fraïssé limit).
- ▶ If the class is not “trivial”, i.e. there are at least some relations in the language, then the objects in the class are **rigid** (they have no symmetry apart from the identity).

The second part is paradoxical: Fraïssé classes have maximal symmetry in the limit, but if they are Ramsey classes, the individual objects have no symmetry!

# Structure of Ramsey classes

In the 1980s, serious research began on Ramsey classes. Jarik Nešetřil proved:

## Theorem

- ▶ Any Ramsey class is a Fraïssé class (and so has a Fraïssé limit).
- ▶ If the class is not “trivial”, i.e. there are at least some relations in the language, then the objects in the class are **rigid** (they have no symmetry apart from the identity).

The second part is paradoxical: Fraïssé classes have maximal symmetry in the limit, but if they are Ramsey classes, the individual objects have no symmetry!

In Nešetřil's examples, the rigidity was enforced by having a total order as one of the relations.

## A question

At the time, I constructed a completely different Fraïssé class of rigid structures, by superimposing a **tournament** (whose symmetry group has odd order) with a ternary relation derived from binary trees (whose group has 2-power order). There is no total order in sight; could such a class be a Ramsey class?

## A question

At the time, I constructed a completely different Fraïssé class of rigid structures, by superimposing a **tournament** (whose symmetry group has odd order) with a ternary relation derived from binary trees (whose group has 2-power order). There is no total order in sight; could such a class be a Ramsey class?

This question was answered by a remarkable theorem proved by Kechris, Pestov and Todorčević, connecting Ramsey theory with topological dynamics.

## A question

At the time, I constructed a completely different Fraïssé class of rigid structures, by superimposing a **tournament** (whose symmetry group has odd order) with a ternary relation derived from binary trees (whose group has 2-power order). There is no total order in sight; could such a class be a Ramsey class?

This question was answered by a remarkable theorem proved by Kechris, Pestov and Todorčević, connecting Ramsey theory with topological dynamics.

Briefly, there is a natural topology on the symmetric group of countable degree (the topology of **pointwise convergence**); its closed subgroups are precisely the automorphism groups of relational structures, and so are themselves topological groups.

## The KPT theorem

A topological group  $G$  is **extremely amenable** if any continuous action of  $G$  on a compact set has a fixed point.

# The KPT theorem

A topological group  $G$  is **extremely amenable** if any continuous action of  $G$  on a compact set has a fixed point.

## Theorem

*The automorphism group of the Fraïssé limit of a nontrivial Ramsey class is extremely amenable.*

# The KPT theorem

A topological group  $G$  is **extremely amenable** if any continuous action of  $G$  on a compact set has a fixed point.

## Theorem

*The automorphism group of the Fraïssé limit of a nontrivial Ramsey class is extremely amenable.*

This answers my question. For the set of all total orders on a countable set has a natural topology, and is compact; and the symmetric group acts continuously on it. So, if  $\mathcal{C}$  is a nontrivial Ramsey class with Fraïssé limit  $M$ , then  $\text{Aut}(M)$  fixes a total order; its restriction to any finite subset gives a total order on that set fixed by its automorphisms, showing that these objects must be rigid.

End of story?

Not quite!

## End of story?

Not quite!

If  $\mathcal{C}$  is a Fraïssé class of rigid objects which does not have a total order as part of the structure, then it is not a Ramsey class; can we find an explicit failure of the Ramsey property in the class?

## End of story?

Not quite!

If  $\mathcal{C}$  is a Fraïssé class of rigid objects which does not have a total order as part of the structure, then it is not a Ramsey class; can we find an explicit failure of the Ramsey property in the class? Siavash Lashkarighouchani and I looked at this question, and were able to answer it positively.

## End of story?

Not quite!

If  $\mathcal{C}$  is a Fraïssé class of rigid objects which does not have a total order as part of the structure, then it is not a Ramsey class; can we find an explicit failure of the Ramsey property in the class? Siavash Lashkarighouchani and I looked at this question, and were able to answer it positively.

Failure of the Ramsey property means that there are structures  $A$  and  $B$  such that, for any structure  $C$  in the class, there is a colouring of the embeddings of  $A$  into  $C$  red and blue such that no copy of  $B$  is monochromatic.

## End of story?

Not quite!

If  $\mathcal{C}$  is a Fraïssé class of rigid objects which does not have a total order as part of the structure, then it is not a Ramsey class; can we find an explicit failure of the Ramsey property in the class? Siavash Lashkarighouchani and I looked at this question, and were able to answer it positively.

Failure of the Ramsey property means that there are structures  $A$  and  $B$  such that, for any structure  $C$  in the class, there is a colouring of the embeddings of  $A$  into  $C$  red and blue such that no copy of  $B$  is monochromatic.

In fact, we were able to do this with  $|A| = 2$  (and for my original example, also  $|B| = 3$ ).

## End of story?

Not quite!

If  $\mathcal{C}$  is a Fraïssé class of rigid objects which does not have a total order as part of the structure, then it is not a Ramsey class; can we find an explicit failure of the Ramsey property in the class? Siavash Lashkarighouchani and I looked at this question, and were able to answer it positively.

Failure of the Ramsey property means that there are structures  $A$  and  $B$  such that, for any structure  $C$  in the class, there is a colouring of the embeddings of  $A$  into  $C$  red and blue such that no copy of  $B$  is monochromatic.

In fact, we were able to do this with  $|A| = 2$  (and for my original example, also  $|B| = 3$ ).

Further questions remain, but that's enough for now ...

