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Ramsey’s theorem

Frank Ramsey proved his theorem in 1930. It is often stated as
the slogan “complete disorder is impossible”.

If I have n people at a party, any two of them either friends or
strangers, and if n ≥ 6, then there will be either three mutual
friends or three mutual strangers. (This is the party problem).
Ramsey generalised this in three ways:
▶ there might be more than two possible relations between

two people;
▶ we might be looking for a set larger than 3 of people all

satisfying the same pairwise relation;
▶ and finally, instead of a relation between two people, it

might be a relation between k people for some k (so that we
are dividing the set of k-element subsets into a fixed
number r of classes).

In each case, Ramsey guarantees that, if the party is large
enough, then we can find the set we are looking for.



Ramsey’s theorem

Frank Ramsey proved his theorem in 1930. It is often stated as
the slogan “complete disorder is impossible”.
If I have n people at a party, any two of them either friends or
strangers, and if n ≥ 6, then there will be either three mutual
friends or three mutual strangers. (This is the party problem).

Ramsey generalised this in three ways:
▶ there might be more than two possible relations between

two people;
▶ we might be looking for a set larger than 3 of people all

satisfying the same pairwise relation;
▶ and finally, instead of a relation between two people, it

might be a relation between k people for some k (so that we
are dividing the set of k-element subsets into a fixed
number r of classes).

In each case, Ramsey guarantees that, if the party is large
enough, then we can find the set we are looking for.



Ramsey’s theorem

Frank Ramsey proved his theorem in 1930. It is often stated as
the slogan “complete disorder is impossible”.
If I have n people at a party, any two of them either friends or
strangers, and if n ≥ 6, then there will be either three mutual
friends or three mutual strangers. (This is the party problem).
Ramsey generalised this in three ways:

▶ there might be more than two possible relations between
two people;

▶ we might be looking for a set larger than 3 of people all
satisfying the same pairwise relation;

▶ and finally, instead of a relation between two people, it
might be a relation between k people for some k (so that we
are dividing the set of k-element subsets into a fixed
number r of classes).

In each case, Ramsey guarantees that, if the party is large
enough, then we can find the set we are looking for.



Ramsey’s theorem

Frank Ramsey proved his theorem in 1930. It is often stated as
the slogan “complete disorder is impossible”.
If I have n people at a party, any two of them either friends or
strangers, and if n ≥ 6, then there will be either three mutual
friends or three mutual strangers. (This is the party problem).
Ramsey generalised this in three ways:
▶ there might be more than two possible relations between

two people;

▶ we might be looking for a set larger than 3 of people all
satisfying the same pairwise relation;

▶ and finally, instead of a relation between two people, it
might be a relation between k people for some k (so that we
are dividing the set of k-element subsets into a fixed
number r of classes).

In each case, Ramsey guarantees that, if the party is large
enough, then we can find the set we are looking for.



Ramsey’s theorem

Frank Ramsey proved his theorem in 1930. It is often stated as
the slogan “complete disorder is impossible”.
If I have n people at a party, any two of them either friends or
strangers, and if n ≥ 6, then there will be either three mutual
friends or three mutual strangers. (This is the party problem).
Ramsey generalised this in three ways:
▶ there might be more than two possible relations between

two people;
▶ we might be looking for a set larger than 3 of people all

satisfying the same pairwise relation;

▶ and finally, instead of a relation between two people, it
might be a relation between k people for some k (so that we
are dividing the set of k-element subsets into a fixed
number r of classes).

In each case, Ramsey guarantees that, if the party is large
enough, then we can find the set we are looking for.



Ramsey’s theorem

Frank Ramsey proved his theorem in 1930. It is often stated as
the slogan “complete disorder is impossible”.
If I have n people at a party, any two of them either friends or
strangers, and if n ≥ 6, then there will be either three mutual
friends or three mutual strangers. (This is the party problem).
Ramsey generalised this in three ways:
▶ there might be more than two possible relations between

two people;
▶ we might be looking for a set larger than 3 of people all

satisfying the same pairwise relation;
▶ and finally, instead of a relation between two people, it

might be a relation between k people for some k (so that we
are dividing the set of k-element subsets into a fixed
number r of classes).

In each case, Ramsey guarantees that, if the party is large
enough, then we can find the set we are looking for.



Ramsey’s theorem

Frank Ramsey proved his theorem in 1930. It is often stated as
the slogan “complete disorder is impossible”.
If I have n people at a party, any two of them either friends or
strangers, and if n ≥ 6, then there will be either three mutual
friends or three mutual strangers. (This is the party problem).
Ramsey generalised this in three ways:
▶ there might be more than two possible relations between

two people;
▶ we might be looking for a set larger than 3 of people all

satisfying the same pairwise relation;
▶ and finally, instead of a relation between two people, it

might be a relation between k people for some k (so that we
are dividing the set of k-element subsets into a fixed
number r of classes).

In each case, Ramsey guarantees that, if the party is large
enough, then we can find the set we are looking for.



Ramsey theory

Many authors (including Paul Erdős and his collaborators)
have generalised this theorem, and turned it into a theory. My
talk is about one aspect of that theory.

I am talking about relational structures; one of these is a set
with certain specified relations on it. (Think graphs, ordered
sets, etc. – but we may have several relations, e.g. a graph and
an order on the same set.)
We are interested in classes of such structures (with the same
named relations). We always assume that our classes are
hereditary, that is, closed under taking induced substructures
(formed by picking a subset and all instances of the relation
within it). For example, if we are dealing with graphs, we take
a set of vertices, and all the edges it contains.
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Ramsey classes

Guided by Ramsey’s theorem, we say that a class C of finite
structures is a Ramsey class if, for any A, B ∈ C, there is a C ∈ C
such that, if the embeddings of A into C are coloured red and
blue, then there is a copy of B in C all of whose embedded As
have the same colour.

In the party problem, A is a set of size 2, B a set of size 3, and
we can take C to be a set of size 6.
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Fräıssé classes

In 1949, Roland Fraı̈ssé asked himself: for which classes C of
finite structures is there a countably infinite structure M such
that
▶ C is precisely the class of finite structures embeddable in

M;

▶ M has maximum symmetry, in the sense that any
isomorphism between finite substructures of M can be
extended to an automorphism of M.

He was able to give a precise characterisation of these classes;
they are now called Fraı̈ssé classes, and the structure M is the
Fraı̈ssé limit of C. (It is uniquely determined by C.)
For example, finite ordered sets and finite graphs form Fraı̈ssé
classes; their Fraı̈ssé limits are respectively the rational
numbers (as ordered set) and the Erdős–Rényi random graph.
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In 1949, Roland Fraı̈ssé asked himself: for which classes C of
finite structures is there a countably infinite structure M such
that
▶ C is precisely the class of finite structures embeddable in

M;
▶ M has maximum symmetry, in the sense that any

isomorphism between finite substructures of M can be
extended to an automorphism of M.

He was able to give a precise characterisation of these classes;
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Structure of Ramsey classes

In the 1980s, serious research began on Ramsey classes. Jarik
Nešetřil proved:

Theorem
▶ Any Ramsey class is a Fraı̈ssé class (and so has a Fraı̈ssé limit).
▶ If the class is not “trivial”, i.e. there are at least some relations in

the language, then the objects in the class are rigid (they have no
symmetry apart from the identity).

The second part is paradoxical: Fraı̈ssé classes have maximal
symmetry in the limit, but if they are Ramsey classes, the
individual objects have no symmetry!
In Nešetřil’s examples, the rigidity was enforced by having a
total order as one of the relations.
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▶ If the class is not “trivial”, i.e. there are at least some relations in
the language, then the objects in the class are rigid (they have no
symmetry apart from the identity).

The second part is paradoxical: Fraı̈ssé classes have maximal
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▶ If the class is not “trivial”, i.e. there are at least some relations in

the language, then the objects in the class are rigid (they have no
symmetry apart from the identity).

The second part is paradoxical: Fraı̈ssé classes have maximal
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A question

At the time, I constructed a completely different Fraı̈ssé class of
rigid structures, by superimposing a tournament (whose
symmetry group has odd order) with a ternary relation derived
from binary trees (whose group has 2-power order). There is no
total order in sight; could such a class be a Ramsey class?

This question was answered by a remarkable theorem proved
by Kechris, Pestov and Todorčević, connecting Ramsey theory
with topological dynamics.
Briefly, there is a natural topology on the symmetric group of
countable degree (the topology of pointwise convergence); its
closed subgroups are precisely the automorphism groups of
relational structures, and so are themselves topological groups.
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The KPT theorem

A topological group G is extremely amenable if any continuous
action of G on a compact set has a fixed point.

Theorem
The automorphism group of the Fraı̈ssé limit of a nontrivial Ramsey
class is extremely amenable.
This answers my question. For the set of all total orders on a
countable set has a natural topology, and is compact; and the
symmetric group acts continuously on it. So, if C is a nontrivial
Ramsey class with Fraı̈ssé limit M, then Aut(M) fixes a total
order; its restriction to any finite subset gives a total order on
that set fixed by its automorphisms, showing that these objects
must be rigid.
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End of story?

Not quite!

If C is a Fraı̈ssé class of rigid objects which does not have a total
order as part of the structure, then it is not a Ramsey class; can
we find an explicit failure of the Ramsey property in the class?
Siavash Lashkarighouchani and I looked at this question, and
were able to answer it positively.
Failure of the Ramsey property means that there are structures
A and B such that, for any structure C in the class, there is a
colouring of the embeddings of A into C red and blue such that
no copy of B is monochromatic.
In fact, we were able to do this with |A| = 2 (and for my
original example, also |B| = 3).
Further questions remain, but that’s enough for now . . .
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If C is a Fraı̈ssé class of rigid objects which does not have a total
order as part of the structure, then it is not a Ramsey class; can
we find an explicit failure of the Ramsey property in the class?
Siavash Lashkarighouchani and I looked at this question, and
were able to answer it positively.
Failure of the Ramsey property means that there are structures
A and B such that, for any structure C in the class, there is a
colouring of the embeddings of A into C red and blue such that
no copy of B is monochromatic.
In fact, we were able to do this with |A| = 2 (and for my
original example, also |B| = 3).

Further questions remain, but that’s enough for now . . .



End of story?

Not quite!
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