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The Petersen graph

� � �
� � �
� ��

���
����������� � � � � � � � � � � ���

����� � � �
���

���
� � �

� � ����
���

� � �
� � �

� �

�
�

�
� �
� ��

Norman Biggs’ notation for this graph is as follows:
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Three remarkable graphs

N. L. Biggs, Three remarkable graphs, Canad.
J. Math. 25 (1973), 397–411.

There are exactly three graphs which are

� trivalent,

� distance-transitive,

� vertex-primitive,

� not K4.

They are the Petersen graph, the Coxeter graph, and
the Biggs–Smith graph. The second and third are
shown on the next slide.
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Three remarkable graphs
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These graphs, with 10, 28 and 102 vertices
respectively, are called I, Y and H by Biggs for
obvious reasons.
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Semiregular automorphisms

An automorphism of a graph is semiregular if it
permutes the vertices in cycles of the same length.

Biggs’ graphs I, Y, H have semiregular
automorphisms of order 5, 7 and 17 respectively.

As these examples show, the existence of a
semiregular automorphism may lead to a very
compact description of a graph.
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The polycirculant conjecture

A graph is called a circulant if it has an
automorphism permuting the vertices in a single
cycle. More generally, a graph is a polycirculant if it
has a non-identity semiregular automorphism.

For example, the Petersen graph is a polycirculant,
but not a circulant.

The following conjecture is due to D. Marušič,
Discrete Math. 36 (1981), 69–81, and independently
to D. Jordan, Dresdner Reihe Forsch. 9 (1988).

The polycirculant conjecture: Every
vertex-transitive finite graph is a polycirculant.
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2-closure and Klin’s conjecture

Let G be a permutation group on a set Ω. The
2-closure of G is the set of all permutations p of Ω
with the property that, for any two points α � β � Ω,
there exists g � G such that � α � β � p ��� α � β � g. That is,
it is the largest permutation group which has the
same orbits on 2-sets as G does.

A permutation group is 2-closed if it is equal to its
2-closure.

The automorphism group of a (di)graph is 2-closed.
The converse is false.

M. Klin, BCC Problem 15.12, generalised the
polycirculant conjecture as follows:

Conjecture: Every transitive 2-closed finite
permutation group of degree greater than 1 contains
a non-identity semiregular element.
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Fixed-point-free permutations

The context of Klin’s conjecture is the following old
theorem of C. Jordan in 1872:

Theorem 1 Every transitive finite permutation group
of degree greater than 1 contains a non-identity
fixed-point-free element.

The proof is elementary. By the Orbit-counting
Lemma, the average number of fixed points of the
elements of G is equal to 1. But the identity has more
than one fixed point; so some element has less than
one.
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Fixed-point-free elements, continued

B. Fein, W. M. Kantor and M. Schacher, J. Reine
Angew. Math. 328 (1981), 39–57, improved Jordan’s
Theorem:

Theorem 2 Every transitive finite permutation group
of degree greater than 1 contains a non-identity
fixed-point-free element of prime-power order.

Sketch proof: There is an elementary reduction to the
case where G is a simple group. Then apply the
Classification of Finite Simple Groups and analyse in
detail the various cases. The proof is definitely not
“elementary”!

Note that, to prove Klin’s conjecture, it would suffice
to replace “prime-power” by “prime” in this theorem.
However, this is false, though examples are not very
common.
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Elusive permutation groups

A transitive permutation group is said to be elusive if
it contains no non-trivial semiregular element
(equivalently, no fixed-point-free element of prime
order).

Our attack on Klin’s conjecture is:

� Try to determine the elusive permutation groups.

� Check whether these groups can be 2-closed.

The advantage is that previous attempts fail because
we don’t know enough about what extra properties a
2-closed group must have.
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Examples of elusive groups

Example Let p be a Mersenne prime. The field
GF � p2 � can be identified with the affine plane over
GF � p � . Let

G � AGL � 1 � p2 ����� x �� ax � b : a � b � GF � p2 ��� a �� 0 �
acting on the p � p � 1 � lines of AG � 2 � p � . The only
primes dividing p � p � 1 � are 2 and p; elements of
order p are translations, and so have fixed lines;
elements of order 2 clearly have fixed lines.

Example The Mathieu group M11 has an action on 12

points, in which it is 3-transitive. Inspection of the
character table shows that no element of order 2 or 3

is fixed-point-free.
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Elusive groups of degree 12

All elusive groups of degree 12 are conjugate to
subgroups of M11, and together with their inclusions
are shown in the diagram below.

M11

AΓL � 1 � 9 �

AGL � 1 � 9 �! 32 : C8

M10  A6 " 2

M9  32 : Q8

# # #
# #

# # #
# #

# # #
#

$$$
$$

$$$
$
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Degrees of elusive groups

Many more examples exist. Rather than describing
the constructions in detail, I sketch what is known
about the degrees of elusive groups.

� The set of degrees of elusive groups is
multiplicatively closed.

� For any Mersenne prime p, any positive
integer n, and any number m such that 2m % p,
there is an elusive group of degree 2mpn. These
arise from the examples of degree p � p � 1 � by
means of a doubling construction and a Hensel
lift.

� There is a sporadic elusive group of degree 84,
from which examples of degree 7n & 12 can be
constructed for all n % 0.
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Degrees of elusive groups

The numbers less than 100 which are known to be
degrees of elusive groups are

12 � 24 � 36 � 48 � 56 � 72 � 84 � 96 '

Problem: Is it true that the set of degrees of elusive
groups has density zero?

Remark: None of the known constructions of elusive
groups produces an example which is 2-closed.
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Characterisations

Theorem 3 (Giudici) A primitive elusive permutation
group is isomorphic to the wreath product M11 ( K, for
some transitive permutation group K (and so has
degree 12k).

More generally, Giudici has found all elusive groups
which have a transitive minimal normal subgroup: the
list is the same.

Giudici has also determined the elusive groups which
have a non-soluble minimal normal subgroup. The
complete determination of elusive groups has not yet
been found.
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Isbell’s conjecture

This problem arises in game theory. Von Neumann
and Morgenstern analysed so-called simple n-person
games by the family of winning coalitions, sets of
players who can force a win if they cooperate. This
family has the following obvious properties:

� A superset of a winning coalition is a winning
coalition.

� A set is a winning coalition if and only if its
complement is not a winning coalition.

An n-person game is obviously fair if there is a group
of symmetries of the game which permutes the
players transitively. Call such a game symmetric. For
which n do symmetric simple n-person games exist?
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Isbell’s conjecture

Isbell (1959) noted that a symmetric simple n-person
game exists if and only if there is a transitive
permutation group of degree n which contains no
fixed-point-free element of 2-power order. In 1960 he
conjectured that such a group exists if and only if
n � 2a & b, where b is odd and a is sufficiently large in
terms of b.

Note that, by Fein–Kantor–Schacher, there is always
a fixed-point-free element of some prime power
order. It seems plausible that, if the prime 2

dominates the degree, then we can choose this
prime to be 2. In this form, the conjecture can be
extended to any prime in place of 2.

However, after more than 40 years and CFSG, the
conjecture is still wide open!
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A related question

As is well known, the proportion of derangements
(fixed-point-free elements) in the symmetric group is
very close to 1 ) e.

No such result is true for arbitrary transitive groups.
However, Cameron and Cohen showed that the
proportion of fixed-point-free elements in a transitive
group of degree n is at least 1 ) n. Moreover, if equality
holds, then the group is sharply 2-transitive, and
hence n is a power of a prime p and every
fixed-point-free element in G has order p.

Problem: Find a lower bound, in terms of n, for the
proportion of fixed-point-free elements of prime
power order in a transitive permutation group of
degree n.
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