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P. Erdős and P. Turán, On some problems of a
statistical group theory,
I, Z. Wahrscheinlichkeitstheorie und Verw. Gebeite 4
(1965), 175–186;
II, Acta Math. Acad. Sci. Hungar. 18 (1967),
151–164;
III, ibid. 18 (1967), 309–320;
IV, ibid. 19 (1968), 413–435;
V, Period. Math. Hungar. 1 (1971), 5–13;
VI, J. Indian Math. Soc. (N.S.) 34 (1971), 175–192;
VII, Period. Math. Hungar. 2 (1972), 149–163.

2

Extremal problems

How many permutations in a set (or group) with
prescribed distances?

The distance between permutations g � h � Sn is the
number of positions where g and h disagree (this is
n � fix

�
g � 1h � ).

For S � � 0 � � � � � n � 2 	 , let fS
�
n � be the size of the

largest subset X of Sn with fix
�
g � 1h � �

S for all distinct
g � h � X ; for s 
 n, let fs

�
n � be the size of the largest

s-distance subset of Sn. Let f g
S

�
n � and f g

s
�
n � be the

corresponding numbers for subgroups of Sn.
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Results and problems

Theorem
�
c1n � s � 2s � fs

�
n � � �

c2n � s � 2s.

Problem Does s
�
fs

�
n � � 1 
 2s � cn as n � ∞? (for fixed

s, or for s � ∞).

Theorem (Blichfeldt) f g
S

�
n � divides

∏
s � S

�
n � s � �

Problem Which groups attain Blichfeldt’s bound?

Problem Is it true that

fS
�
n � � ∏

s � S

�
n � s �

for S fixed, n large?
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A specific problem

Theorem (Blake–Cohen–Deza) If S � � 0 � 1 � � � � � t � 1 	 ,
then

fS
�
n � � n

�
n � 1� � � � �

n � t � 1� �
Equality holds if and only if a sharply t-transitive set
of permutations exists.

Theorem If S � � � 0 � � � � � n � 1 	 � S then

fS
�
n � � fS �

�
n � � n! �

Problem If S � � t � � � � � n � 1 	 , is
fS

�
n � � �

n � t � ! for n large relative to t?
(The extremal configuration should be a coset of the
stabiliser of t points.)

The bound holds if a sharply t-transitive set exists.
Compare the Erdős–Ko–Rado theorem.
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Derang ements and Latin squares

A derangement is a permutation which has no fixed
points. It is well-known that the number of
derangements in Sn is the nearest integer to n! � e.

If a Latin square of order n is normalised so that the
first row is

�
12 � � � n � , then the other rows are

derangements.

Every derangement occurs as the second row of a
normalised Latin square.

Problem Is it true that the distribution of the number
of rows of a random Latin square which are even
permutations is approximately binomial B

�
n � 1

2 � ?
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Derang ements and Latin squares,

contin ued

Problem Choose a random permutation π as
follows: select a Latin square from the uniform
distribution, normalise, and let π be the second row.
(So the permutations which occur with positive
probability are the derangements.)

� How does the ratio of the probability of the most
and least likely derangement behave?

� Is it true that, with probability tending to 1, a
random derangement lies in no transitive
subgroup of Sn except Sn and possibly An?
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Derang ements of prime power order

Theorem (Frobenius) A non-trivial finite transitive
permutation group contains a derangement.

Theorem (Kantor [CFSG]) A non-trivial finite
transitive permutation group contains a derangement
of prime power order.

Problem (Isbell) Is it true that, if a is sufficiently large
in terms of p and b (p prime), then a transitive
permutation group of degree n � pa � b contains a
derangement of p-power order?
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Derang ements of prime order

Call G elusive if it is transitive and contains no
derangement of prime order.

Theorem (Giudici [CFSG]) A quasiprimitive elusive
group is isomorphic to M11 � H for some transitive
group H.

Problem Does the set of degrees of elusive groups
have density zero? (This set contains 2n for every
even perfect number n, and is multiplicatively closed.)

Problem (Jordan, Marušič) Show that the
automorphism group of a vertex-transitive graph is
non-elusive.
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Ber trand, Sylvester and Erdős

Ber trand’ s Postulate was proposed for an
application to permutation groups. The first published
paper of Paul Erdős was a short proof of Bertrand’s
Postulate.

Sylvester generalised Bertrand’s Postulate as follows:

Theorem The product of k consecutive numbers
greater than k is divisible by a prime greater than k.

Erdős also gave a short proof of this. It deals with a
case in the proof of Giudici’s Theorem which cannot
be handled by group-theoretic methods, where G is a
symmetric or alternating group in its action on
k-element subsets. Sylvester’s Theorem gives a
derangement of prime order in this case.
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Counting orbits

The orbit-counting lemma asserts that the number of
orbits of a finite permutation group G is equal to the
average number of fixed points of elements of G. It is
proved by counting edges in the bipartite graph on

� 1 � � � � � n 	 � G, where i is joined to g if g fixes i.

Jerrum’s Markov chain on � 1 � � � � � n 	 : one step
consists of two steps in a random walk on the graph.
The limiting distribution is uniform on the orbits. This
gives a method for choosing random ‘unlabelled’
structures.

Problem For which families of permutation groups is
this Markov chain rapidly mixing?
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An infinite analogue

There is no natural way to choose a random
permutation of a countable set, since the symmetric
group is not compact.

Parallels:

� The countable random graph (the generic
countable graph), Erdős and Rényi.

� A permutation of a finite set is given by a pair of
total orders of the set.

So instead of the random permutation, consider the
generic pair (or n-tuple) of total orders. Note that the
generic (or random) total order is isomorphic to Q.
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