Permutations

Peter J. Cameron School of Mathematical Sciences Queen Mary and Westfield College London E1 4NS U.K.

Paul Erdős Memorial Conference Budapest, Hungary 5 July 1999

Extremal problems

How many permutations in a set (or group) with prescribed distances?

The *distance* between permutations $g, h \in S_n$ is the number of positions where g and h disagree (this is $n - \text{fix}(g^{-1}h)$).

For $S \subseteq \{0, ..., n-2\}$, let $f_S(n)$ be the size of the largest subset X of S_n with $\operatorname{fix}(g^{-1}h) \in S$ for all distinct $g, h \in X$; for s < n, let $f_s(n)$ be the size of the largest s-distance subset of S_n . Let $f_S^g(n)$ and $f_S^g(n)$ be the corresponding numbers for subgroups of S_n .

3

4

Erdős and Turán on random permutations

P. Erdős and P. Turán, On some problems of a statistical group theory,
I, *Z. Wahrscheinlichkeitstheorie und Verw. Gebeite* 4 (1965), 175–186;
II, *Acta Math. Acad. Sci. Hungar.* 18 (1967), 151–164;
III, *ibid.* 18 (1967), 309–320;
IV, *ibid.* 19 (1968), 413–435;
V, *Period. Math. Hungar.* 1 (1971), 5–13;
VI, *J. Indian Math. Soc.* (N.S.) 34 (1971), 175–192;

VII, Period. Math. Hungar. 2 (1972), 149–163.

Results and problems

Theorem $(c_1n/s)^{2s} \le f_s(n) \le (c_2n/s)^{2s}$.

Problem Does $s(f_s(n))^{1/2s} \sim cn$ as $n \to \infty$? (for fixed *s*, or for $s \to \infty$).

Theorem (Blichfeldt) $f_S^g(n)$ divides

$$\prod_{s\in S}(n-s).$$

Problem Which groups attain Blichfeldt's bound?

Problem Is it true that

$$f_S(n) \le \prod_{s \in S} (n-s)$$

2

1

A specific problem

Theorem (Blake–Cohen–Deza) If $S = \{0, 1, \dots, t-1\}$, then

 $f_S(n) \le n(n-1)\cdots(n-t+1).$

Equality holds if and only if a *sharply t-transitive set* of permutations exists.

Theorem If $S' = \{0, \dots, n-1\} \setminus S$ then

$f_S(n) \cdot f_{S'}(n) \le n!.$

Problem If $S = \{t, ..., n-1\}$, is $f_S(n) \le (n-t)!$ for *n* large relative to *t*? (The extremal configuration should be a coset of the stabiliser of *t* points.)

The bound holds if a sharply *t*-transitive set exists. Compare the Erdős–Ko–Rado theorem.

5

Derangements and Latin squares, continued

Problem Choose a random permutation π as follows: select a Latin square from the uniform distribution, normalise, and let π be the second row. (So the permutations which occur with positive probability are the derangements.)

- How does the ratio of the probability of the most and least likely derangement behave?
- Is it true that, with probability tending to 1, a random derangement lies in no transitive subgroup of *S_n* except *S_n* and possibly *A_n*?

7

8

Derangements and Latin squares

A *derangement* is a permutation which has no fixed points. It is well-known that the number of derangements in S_n is the nearest integer to n!/e.

If a Latin square of order *n* is normalised so that the first row is $(12 \dots n)$, then the other rows are derangements.

Every derangement occurs as the second row of a normalised Latin square.

Problem Is it true that the distribution of the number of rows of a random Latin square which are even permutations is approximately binomial $B(n, \frac{1}{2})$?

Derangements of prime power order

Theorem (Frobenius) A non-trivial finite transitive permutation group contains a derangement.

Theorem (Kantor [CFSG]) A non-trivial finite transitive permutation group contains a derangement of prime power order.

Problem (Isbell) Is it true that, if *a* is sufficiently large in terms of *p* and *b* (*p* prime), then a transitive permutation group of degree $n = p^a \cdot b$ contains a derangement of *p*-power order?

6

Derangements of prime order

Call *G* elusive if it is transitive and contains no derangement of prime order.

Theorem (Giudici [CFSG]) A quasiprimitive elusive group is isomorphic to $M_{11} \wr H$ for some transitive group *H*.

Problem Does the set of degrees of elusive groups have density zero? (This set contains 2n for every even perfect number n, and is multiplicatively closed.)

Problem (Jordan, Marušič) Show that the automorphism group of a vertex-transitive graph is non-elusive.

9

Counting orbits

The *orbit-counting lemma* asserts that the number of orbits of a finite permutation group *G* is equal to the average number of fixed points of elements of *G*. It is proved by counting edges in the bipartite graph on $\{1, ..., n\} \cup G$, where *i* is joined to *g* if *g* fixes *i*.

Jerrum's Markov chain on $\{1, ..., n\}$: one step consists of two steps in a random walk on the graph. The limiting distribution is uniform on the orbits. This gives a method for choosing random 'unlabelled' structures.

Problem For which families of permutation groups is this Markov chain rapidly mixing?

11

Bertrand, Sylvester and Erdős

Bertrand's Postulate was proposed for an application to permutation groups. The first published paper of Paul Erdős was a short proof of Bertrand's Postulate.

Sylvester generalised Bertrand's Postulate as follows:

Theorem The product of k consecutive numbers greater than k is divisible by a prime greater than k.

Erdős also gave a short proof of this. It deals with a case in the proof of Giudici's Theorem which cannot be handled by group-theoretic methods, where G is a symmetric or alternating group in its action on k-element subsets. Sylvester's Theorem gives a derangement of prime order in this case.

10

An infinite analogue

There is no natural way to choose a random permutation of a countable set, since the symmetric group is not compact.

Parallels:

- The countable random graph (the generic countable graph), Erdős and Rényi.
- A permutation of a finite set is given by a pair of total orders of the set.

So instead of the random permutation, consider the generic pair (or *n*-tuple) of total orders. Note that the generic (or random) total order is isomorphic to \mathbf{Q} .