Permutations

Peter J. Cameron
School of Mathematical Sciences
Queen Mary and Westfield College
London E1 4NS
U.K.

Paul Erdős Memorial Conference
Budapest, Hungary
5 July 1999

Extremal problems

How many permutations in a set (or group) with prescribed distances?

The distance between permutations $g, h \in S_{n}$ is the number of positions where g and h disagree (this is $\left.n-\operatorname{fix}\left(g^{-1} h\right)\right)$.

For $S \subseteq\{0, \ldots, n-2\}$, let $f_{S}(n)$ be the size of the largest subset X of S_{n} with fix $\left(g^{-1} h\right) \in S$ for all distinct $g, h \in X$; for $s<n$, let $f_{s}(n)$ be the size of the largest s-distance subset of S_{n}. Let $f_{S}^{g}(n)$ and $f_{S}^{g}(n)$ be the corresponding numbers for subgroups of S_{n}.

Erdős and Turán on random permutations

P. Erdős and P. Turán, On some problems of a statistical group theory,
I, Z. Wahrscheinlichkeitstheorie und Verw. Gebeite 4 (1965), 175-186;

II, Acta Math. Acad. Sci. Hungar. 18 (1967), 151-164;
III, ibid. 18 (1967), 309-320;
IV, ibid. 19 (1968), 413-435;
V, Period. Math. Hungar. 1 (1971), 5-13;
VI, J. Indian Math. Soc. (N.S.) 34 (1971), 175-192;
VII, Period. Math. Hungar. 2 (1972), 149-163.

Results and problems

Theorem $\left(c_{1} n / s\right)^{2 s} \leq f_{s}(n) \leq\left(c_{2} n / s\right)^{2 s}$.
Problem Does $s\left(f_{s}(n)\right)^{1 / 2 s} \sim c n$ as $n \rightarrow \infty$? (for fixed s, or for $s \rightarrow \infty$).

Theorem (Blichfeldt) $f_{S}^{g}(n)$ divides

$$
\prod_{s \in S}(n-s)
$$

Problem Which groups attain Blichfeldt's bound?

Problem Is it true that

$$
f_{S}(n) \leq \prod_{s \in S}(n-s)
$$

for S fixed, n large?

A specific problem

Theorem (Blake-Cohen-Deza) If $S=\{0,1, \ldots, t-1\}$, then

$$
f_{S}(n) \leq n(n-1) \cdots(n-t+1) .
$$

Equality holds if and only if a sharply t-transitive set of permutations exists.

Theorem If $S^{\prime}=\{0, \ldots, n-1\} \backslash S$ then

$$
f_{S}(n) \cdot f_{S^{\prime}}(n) \leq n!.
$$

Problem If $S=\{t, \ldots, n-1\}$, is
$f_{S}(n) \leq(n-t)$! for n large relative to t ?
(The extremal configuration should be a coset of the stabiliser of t points.)

The bound holds if a sharply t-transitive set exists. Compare the Erdős-Ko-Rado theorem.

Derangements and Latin squares, continued

Problem Choose a random permutation π as follows: select a Latin square from the uniform distribution, normalise, and let π be the second row. (So the permutations which occur with positive probability are the derangements.)

- How does the ratio of the probability of the most and least likely derangement behave?
- Is it true that, with probability tending to $1, a$ random derangement lies in no transitive subgroup of S_{n} except S_{n} and possibly A_{n} ?

Derangements and Latin squares

A derangement is a permutation which has no fixed points. It is well-known that the number of derangements in S_{n} is the nearest integer to $n!/ \mathrm{e}$.

If a Latin square of order n is normalised so that the first row is $(12 \ldots n)$, then the other rows are derangements.

Every derangement occurs as the second row of a normalised Latin square.

Problem Is it true that the distribution of the number of rows of a random Latin square which are even permutations is approximately binomial $B\left(n, \frac{1}{2}\right)$?

Derangements of prime power order

Theorem (Frobenius) A non-trivial finite transitive permutation group contains a derangement.

Theorem (Kantor [CFSG]) A non-trivial finite transitive permutation group contains a derangement of prime power order.

Problem (Isbell) Is it true that, if a is sufficiently large in terms of p and b (p prime), then a transitive permutation group of degree $n=p^{a} \cdot b$ contains a derangement of p-power order?

Derangements of prime order

Call G elusive if it is transitive and contains no derangement of prime order.

Theorem (Giudici [CFSG]) A quasiprimitive elusive group is isomorphic to $M_{11} \curlywedge H$ for some transitive group H.

Problem Does the set of degrees of elusive groups have density zero? (This set contains $2 n$ for every even perfect number n, and is multiplicatively closed.)

Problem (Jordan, Marušič) Show that the automorphism group of a vertex-transitive graph is non-elusive.

Counting orbits

The orbit-counting lemma asserts that the number of orbits of a finite permutation group G is equal to the average number of fixed points of elements of G. It is proved by counting edges in the bipartite graph on $\{1, \ldots, n\} \cup G$, where i is joined to g if g fixes i.

Jerrum's Markov chain on $\{1, \ldots, n\}$: one step consists of two steps in a random walk on the graph. The limiting distribution is uniform on the orbits. This gives a method for choosing random 'unlabelled' structures.

Problem For which families of permutation groups is this Markov chain rapidly mixing?

An infinite analogue

There is no natural way to choose a random permutation of a countable set, since the symmetric group is not compact.

Parallels:

- The countable random graph (the generic countable graph), Erdős and Rényi.
- A permutation of a finite set is given by a pair of total orders of the set.

So instead of the random permutation, consider the generic pair (or n-tuple) of total orders. Note that the generic (or random) total order is isomorphic to \mathbf{Q}.

