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Introduction

Let G be a permutation group on a set Ω (usually
infinite). Then G is oligomorphic if, for each natural
number n, the number Fn of G-orbits on n-tuples of
distinct elements of Ω is finite.

The main question is: what can be said about the
growth of the sequence Fn?

This question may be easier than the corresponding
question about the number of orbits of G on
n-element subsets, but has been less studied. In
terms of combinatorial enumeration, it corresponds to
counting labelled, rather than unlabelled, structures.
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Connection with model theory

A countable first-order structure is countably
categorical if it is the unique countable model of its
first-order theory.

Theorem M is countably categorical if and only if
Aut

�
M � is oligomorphic.

If so, then the number of n-types of the theory of M is

F �n � n

∑
k � 1

S
�
n � k � Fk �

where the coefficients S
�
n � k � are the Stirling numbers

of the second kind.

Moreover, every oligomorphic group of countable
degree which is closed (in the topology of pointwise
convergence) is the automorphism group of a
countably categorical structure.
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Generating function

Let F
�
x � be the exponential generating function of�

Fn � , the formal power series

F
�
x � � ∞

∑
n � 0

Fnxn

n! �
In general this is only a formal power series, but of
course we can ask: when does it converge in some
neighbourhood of the origin?

Note that F � � x � � F
�
ex � 1 � , where F � � x � is the

exponential generating function for the sequence�
F �n � , so one series converges if and only if the other

does.
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Finite groups

Suppose that Ω is finite. Boston et al. proved:

Theorem The probability generating function for the
number of fixed points of a random element of G is
F
�
x � 1 � .

(The p.g.f. is the polynomial ∑ pix
i, where pi is the

proportion of elements in G having exactly i fixed
points.)

In particular, the proportion of fixed-point-free
elements in G is F

� � 1 � .
For some oligomorphic groups, F

� � 1 � is defined (e.g.
by analytic continuation), but it is not clear whether
any meaning can be assigned to it.
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Digression: linear groups

The result of Boston et al. can be written as

Fi

i! � n

∑
j � i

�
j
i 	 p j �

which can be inverted to give

pi � n

∑
j � i

� � 1 � j 
 i
�

j
i 	 Fj

j! �
There is an analogue for linear groups over GF

�
q � .

We replace i! (the order of the symmetric group) by�
GL

�
i � q � � , and � j

i  by the Gaussian coefficient � ji � q;
also, let Li be the number of orbits of a linear group
G � GL

�
n � q � on linearly independent i-tuples, and Pi

the proportion of elements of G whose fixed point set
is precisely an i-dimensional subspace. Then

Li�
GL

�
i � q � � � n

∑
j � i � ji � q

Pj �
which can be inverted to give

Pi � n

∑
j � i

� � 1 � j 
 iq � j 
 i � � j 
 i 
 1 ��� 2 � ji � q

L j�
GL

�
j � q � � �
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Digression: cycle index

The result of Boston et al. is in fact a special case of
an older result, which considers cycles of arbitrary
length instead of just fixed points.

The probability generating function for the numbers
of cycles of all possible lengths is the classical cycle
index of the permutation group, as developed by
Redfield, Pólya, de Bruijn and others. It is a
polynomial in indeterminates s1 � s2 � ����� , where si

records cycles of length i. If we set si � 1 for all i � 1,
we obtain the p.g.f. for fixed points.

Now we have three (actual or potential)
generalisations of the result: to oligomorphic groups;
to linear groups; and to cycles of arbitrary length.
The possibility of combining two (or all three) of these
generalisations exists, but has not been fully realised.
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Macpherson’s Theorem

A permutation group is primitive if it preserves no
non-trivial equivalence relation. (Note that in the
countably categorical case, an invariant equivalence
relation would be definable without parameters.) A
permutation group is highly transitive if Fn � 1 for all
n, so that F

�
x � � ex converges everywhere.

Dugald Macpherson proved:

Theorem If G is oligomorphic and primitive but not
highly transitive, then

Fn � n!
p
�
n �

for some polynomial p. In particular, F
�
x � has radius

of convergence at most 1.

For example, the group of order-preserving
permutations of the rational numbers has Fn � n! for
all n, so that F

�
x � � 1 � � 1 � x � , with radius of

convergence 1.
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Highly homogeneous groups

A permutation group is highly homogeneous if it
permutes transitively the set of all n-element subsets
of Ω, for all natural numbers n. I proved the following:

Theorem If G is highly homogeneous but not highly
transitive, then there is a linear or circular order
preserved or reversed by G.

We have Fn � n!, n! � 2,
�
n � 1 � !, and

�
n � 1 � ! � 2 in the

four cases (for large enough n).
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Merola’s Theorem

Francesca Merola recently strengthened
Macpherson’s Theorem as follows.

Theorem There is a constant c � 1 such that, if G is
primitive but not highly homogeneous, then

Fn � cnn!
p
�
n �

for some polynomial p. In particular, the radius of
convergence of F

�
x � is at most 1 � c.

Her proof gives c � 1 � 174 ����� , but it is conjectured that
the result holds with c � 2 (this would be best
possible).
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Groups with slow growth

Thus for primitive groups other than the highly
homogeneous ones, the slowest possible growth rate
is an exponential times a polynomial.

Problem: What can be said about those groups for
which F

�
x � nas non-zero radius of convergence (that

is, Fn grows no faster than cnn! for some c?

Empirically, the known examples come from either
“circular” or “treelike” objects, or combinations of
these.There appears to be a big overlap with the
primitive Jordan groups classified by Adeleke,
Macpherson and Neumann.
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Examples

Example 1 Take a dense subset of the set of
complex roots of unity containing one of x and � x for
all x. An arc joins x to y if 0 � arg

�
y � x ��� π. We have

Fn � �
2n � 2 � !!.

Example 2 Take the amalgamation class of
endvertex structures of boron trees (trees in which
each vertex has valency 1 or 3). We have
Fn � �

2n � 5 � !!.
Example 3 Embed the trees of Example 2 in the
plane. The leaves are then circularly ordered, and we
may impose the structure of Example 1 on them.
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Smoothness

The numbers Fn should grow not only rapidly but also
smoothly in general. It is hard to formulate a general
problem which is informative for all oligomorphic
groups. For groups of small growth, we can ask the
following question.

Problem: Is it true that
�
Fn � n! � 1 � n tends to a limit? Is

it even true that Fn � nFn 
 1 tends to a limit? If so, what
are the possible values of the limit?
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Outline of the proof, I

Merola’s proof follows the main steps of
Macpherson’s.

Let � �
c � be the class of oligomorphic groups which

satisfy

Fn � cnn!
p
�
n �

for some polynomial p. Note that a transitive group
belongs to � �

c � if and only if the point stabiliser does.

We prove, by induction on k, that (for a suitable
constant c � 1) a primitive but not highly
homogeneous group in � �

c � is k-transitive.

The induction step from k to k � 1 is trivial if k � 3. If G

is a primitive group in � �
c � , then G is k-transitive, so

Gα is
�
k � 1 � -transitive (and hence primitive), hence

Gα is k-transitive, hence G is
�
k � 1 � -transitive.
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Outline of the proof, II

The other important ingredient is the following. If we
can find f

�
n � sets of size n in different G-orbits, such

that the group of permutations induced on each set
by its setwise stabiliser has order at most g

�
n � , then

we have

Fn � f
�
n � n!

g
�
n ���

So the trick is to choose f
�
n � and g

�
n � so that

f
�
n ��� g � n � grows exponentially. This requires some

fine tuning!

The proof involves doing this for a variety of different
combinatorial structures.
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Beginning the induction

Case k � 2: If G is not 2-homogeneous, then it is a
group of automorphisms of a graph. If G is
2-homogeneous but not 2-transitive, then it is a group
of automorphisms of a tournament.

Case k � 3: If G is not 3-homogeneous, it is a group
of automorphisms of one of a variety of combinatorial
structures including Steiner systems, 2-trees, etc. If
G is 3-homogeneous but not 2-primitive, it preserves
a treelike structure. If G is 2-primitive then we can
apply the arguments of the preceding case to Gα.

For each class of structures we have to choose c

sufficiently small for the proof to work. The smallest
value c � 1 � 174 ����� occurs in the case of tournaments.
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