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Codes

An 	 n 
 k � code over GF � q  is a k-dimensional subspace
of GF � q  n. Its elements are called codewords.

The weight wt � v  of v is the number of non-zero
coordinates of v. The weight enumerator of C is the
polynomial

WC � X 
 Y �� ∑
v � C Xn � wt � v � Y wt � v ���

The weight enumerator of a code carries a lot of
information about it; but different codes can have the
same weight enumerator.
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Matroids

A matroid on a set E is a family � of subsets of E

(called independent sets with the properties� a subset of an independent set is independent;� if A and B are independent with �A �����B � , then there
exists x � B � A such that A � � x ! is independent.

The rank ρ � A  of a subset A of E is the common size
of maximal independent subsets of A.

Examples of matroids:� E is a family of vectors in a vector space,
independence is linear independence;� E is a family of elements in a field K, independence
is algebraic independence over a subfield F ;� E is the set of edges of a graph, a set is
independent if it is acyclic;� E is the index set of a family � Ai : i � E  of subsets
of X , a set I is independent if � Ai : i � I  has a system
of distinct representatives.
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Tutte polynomial

The Tutte polynomial of a matroid M is given by

T � M;x 
 y "� ∑
A # E

� x $ 1  ρ � E �%� ρ � A � � y $ 1 '&A & � ρ � A � 

where ρ is the rank function of M.

The Tutte polynomial carries a lot of information
about the matroid; e.g. T � M;2 
 1  is the number of
independent sets, and T � M;1 
 1  is the number of
bases (maximal independent sets). But there exist
different matroids with the same Tutte polynomial.

The Tutte polynomial of a matroid generalises the
Jones polynomial of a knot, percolation polynomials,
etc.; and also the weight enumerator of a code, as
we will see.
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Matroids and codes

With a linear 	 n 
 k � code C we may associate in a
canonical way a matroid MC on the set � 1 
 ����� 
 n !
whose independent sets are the sets I for which the
columns � ci : i � I  of a generator matrix for C are
linearly independent.

Curtis Greene showed that the weight enumerator of
the code is a specialisation of the Tutte polynomial of
the matroid:

WC � X 
 Y (� Y n � k � X $ Y  kT

)
MC;x * X +,� q $ 1  Y

X $ Y

 y * X

Y - �
I use the notation F � x * t  to denote the result of
substituting the term t for x in the polynomial F .
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Permutation groups

Let G be a permutation group on E, that is, a
subgroup of the symmetric group on E, where�E �'� n. The cycle index of G is the polynomial Z � G 
in indeterminates s1 
 ����� 
 sn given by

Z � G "� 1�G � ∑g � G
s
c1 � g �
1 .�.�. scn � g �

n
�

In particular,

PG � x "� Z � G '� s1 * x 
 si * 1 for i / 1 
is the p.g.f. for the number of fixed points of a random
element of G.

The cycle index is very important in enumeration
theory. Two simple examples:� Z � G '� s1 * x + 1 
 si * 1 for i / 1  is the exponential
generating function for the number of G-orbits on
k-tuples of distinct points (note that this function is
PG � x + 1  );� Z � G '� si * xi + 1  is the ordinary generating function
for the number of orbits of G on k-subsets of E.
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Permutation groups and codes

Let C be an 	 n 
 k � code over GF � q  . The additive group
G of C acts as a permutation group on the set
E � GF � q 102� 1 
 ����� 
 n ! by the rule that the codeword
v �3� v1 
 ����� 
 vn  acts as the permutation� x 
 i "456� x + vi 
 i  �
Now each permutation has cycles of length 1 and p

only, where p is the characteristic of GF � q  ; and we
have

1�C �WC � X 
 Y �� Z � G;s1 * X1 7 q 
 sp * Y p 7 q 8

For a zero coordinate in v gives rise to q fixed points,
and a non-zero coordinate to q 9 p cycles of length p.

So the cycle index of G carries the same information
as the weight enumerator of C.
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IBIS groups

Let G be a permutation group on Ω. A base for G is a
sequence of points of Ω whose stabiliser is the
identity. It is irredundant if no point in the sequence is
fixed by the stabiliser of its predecessors.

Cameron and Fon-Der-Flaass showed that the
following three conditions on a permutation group are
equivalent:

� all irredundant bases have the same number of
points;� re-ordering any irredundant base gives an
irredundant base;� the irredundant bases are the bases of a matroid.

A permutation group satisfying these conditions is
called an IBIS group (short for Irredundant Bases of
Invariant Size).
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Examples of IBIS groups

� Any Frobenius group is an IBIS group of rank 2,
associated with the uniform matroid.� The general linear and symplectic groups, acting on
their natural vector spaces, are IBIS groups,
associated with the vector matroid (defined by all
vectors in the space).� The Mathieu group M24 in its natural action is an
IBIS group of rank 7.� The permutation group constructed from an 	 n 
 k �
linear code over GF � q  is an IBIS group of degree nq

and rank k. The associated matroid is obtained from
the matroid of the code simply by replacing each
element by a set of q parallel elements. It is
straightforward to obtain the Tutte polynomial of the
group matroid from that of the code matroid and vice
versa.
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Base-transitive groups

A permutation group is base-transitive if it permutes
its irredundant bases transitively. A base-transitive
group is clearly an IBIS group.

All base-transitive groups of rank at least 2 have
been determined by Maund, using CFSG; those of
large rank (at least 7) by Zil’ber, by a geometric
argument not using CFSG.

The matroid associated with a base-transitive group
is a perfect matroid design; this is a matroid of rank r
for which the cardinality ni of an i-flat (a maximal set
of rank i) depends only on i.

Mphako showed that the Tutte polynomial of a PMD
is determined by the cardinalities n1 
 ����� 
 nr of its flats.
If the matroid arises from a base-transitive group,
these are the numbers of fixed points of group
elements. Thus, for a base-transitive group, the cycle
index determines the Tutte polynomial of the matroid,
but not conversely.
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An example

The cycle index does not in general tell us whether a
permutation group is base-transitive. The groups

G1 �:� 1 
;� 1 
 2 '� 3 
 4 8
<� 1 
 3 '� 2 
 4 '
;� 1 
 4 '� 2 
 3 <!=

G2 �:� 1 
;� 1 
 2 '� 3 
 4 8
<� 1 
 2 '� 5 
 6 '
;� 3 
 4 '� 5 
 6 <!

of degree 6 have the same cycle index, namely
Z � G "� 1

4 � s6
1 + 3s2

1s2
2  . The first is base-transitive with

rank 1; the second is an IBIS group of rank 2 (arising
from the binary even-weight code of length 3).

If a group with this cycle index is base-transitive then
Mphako’s result gives the Tutte polynomial as
y2 � y3 + y2 + y + x  .
If a group with this cycle index comes from a code,
we can calculate the Tutte polynomial to be
y4 + 2y3 + 3y2 + y + 3xy + x2 + x.

In the second case, the matroid admits two different
base-transitive groups with different cycle indices
(both isomorphic to S4 as abstract groups).
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A polynomial for IBIS groups

There is a polynomial associated with an IBIS group
which includes both to the cycle index and to the
Tutte polynomial of the matroid. This is the Tutte
cycle index, given by

ZT � G "� 1�G � ∑
A # Ω

u &GA & vb � G > A ? � Z � GA
A '


where GA and G � A � are the setwise and pointwise
stabilisers of A, GA

A the permutation group induced on
A by GA, and b � G  is the base size of G.

We have:)
∂

∂u
ZT � G  - � u * 1 
 v * 1 �� Z � G;si * si + 1  ;

�G � ZT � G;u * 1 
 si * ti @� tb � G � T A M;x * v
t
+ 1 
 y * t + 1 BC


where M is the matroid associated with the IBIS
group G.
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More generally?

For an arbitrary permutation group, the irredundant
bases are not the bases of a matroid. Is there a more
general combinatorial structure defined by these
bases? Can we associate an analogue of the Tutte
polynomial (or the Tutte cycle index) with it?

Note that the first specialisation on the preceding
slide works for an arbitrary permutation group; we
could simply put v * 1 and omit all mention of
matroid rank.
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