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Who discovered the Hamming codes?

Was it

� R. W. Hamming?

� M. J. E. Golay?

� R. A. Fisher?

� J. J. Sylvester?

See “Hamming and Golay, Fisher and Bose” on this
Web page for more about this.
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Factorial design

You are investigating a process whose yield is
affected by a number of factors, each of which can
occur at several levels. Do you

(a) change one factor at a time?

� � � � � � � � � � � �
� � � � � � � � � � � �
� �
� �

(b) Use a design?

� � � � � � � � � � � �
� � � � � � � � � � � �
� �

� �
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Connections

Linear codes and factorial designs are almost the
same concept, even though their theories have
developed quite separately.

Similarly, representations of matroids and point sets
in projective spaces are almost the same concept.

The theme of these lecture is that in fact the two
concepts just descried are almost the same.
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Codes

A linear code C of length n and dimension k over a
field F is a k-dimensional subspace of Fn. The weight
wt
�
v � of a word v � Fn is the number of non-zero

coordinates, and the minimum weight of C is the
smallest weight of a non-zero vector in C.

Codes C and C � are monomial equivalent if C � is
obtained from C by permuting the coordinates and
multiplying them by non-zero scalars.

Theorem 1 A code with minimum weight d can
correct up to � � d 	 1 ��
 2 � errors.
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Matroids

A matroid M on a set E is a family 
 of subsets of E

called independent sets, closed under taking subsets
and satisfying the exchange property.

The rank ρ
�
A � of a subset A of E is the size of the

largest independent subset of A. An independent
subset of E of size ρ

�
E � is called a basis of M.

Example. The uniform matroid U
�
k � n � : the

independent sets are all subsets having cardinality at
most k.

A representation of E over a field F is a map of E into
an F-vector space which preserves independence.
Two representations are equivalent if they are related
by an invertible linear transformation between the
vector spaces.
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Exchange axiom

The exchange axiom states: If A and B are
independent sets such that �B �����A � , then there exists
b � B � A such that A ��� b � is independent.

This guarantees that all bases have the same
cardinality, and so makes the definition of rank
sensible.
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The code-matroid connection

Let A be a k � n matrix over a field F having rank k.
From A we construct

� a code C
�
A � generated by the rows of A;

� a matroid M
�
A � represented in Fk by the columns

of A.

The equivalence relation on such matrices given by
arbitary row operations and monomial column
operations mirrors the natural notions of equivalence
for linear codes and representations of matroids.

Note to geometers: Linear MDS codes in projective
space over GF

�
q � correspond to representations of

the uniform matroid U
�
n � k � over GF

�
q � .
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First and last base

Let the ground set E of the matroid M be totally
ordered, and let ρ

�
E ��� k. Let � be the set of bases

of M. When we write a base as � b1 ��������� bk � , we
assume that b1 � �����!� bk.

The (lexicographically) first base F ��� f1 ��������� fk �
satisfies fi " bi for any base B ��� b1 ��������� bk � .
Dually the last base L �#� l1 ��������� lk � satisfies bi " li for
any base B ��� b1 ��������� bk � .
These properties express the relationship of matroids
to the greedy algorithm.
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Weight enumerator and Tutte polynomial

The weight enumerator of a code C of length n is
given by

WC
�
x � y �$� ∑

c % C xn & wt ' c ( ywt ' c ( �
The Tutte polynomial of a matroid M on E with rank
function ρ is given by

T
�
M;x � y �$� ∑

A ) E

�
x 	 1 � ρE & ρA � y 	 1 �+*A * & ρA �
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Internal and external activity

There is an equivalent definition as follows. Suppose
that M is a matroid on the set E, which is totally
ordered. Let B be a base of M. An element b � B is
internally active with respect to B if, for all c � B, we
have B �,� c ���-� b �.���0/ c � b. The internal activity of
a base is the number of internally active elements
associated with it.

Dually, an element e 
� B is externally active with
respect to B if, for all f � B, we have
f � C

�
e � B ��/ f � e.The external activity of a base is

the number of externally active elements associated
with it.

Then we have

T
�
M;x � y �$� ∑

B %21 ti 3 jxiyi

where ti 3 j is the number of bases with i internally
active elements and j externally active elements.
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First and last; internal and external

A loop in a matroid is an element e � E which is
contained in no basis.

A coloop is an element e � E which is contained in
every basis.

Note that

(a) The internal activity of the first base is the
number of coloops of M, while its external
activity is equal to �E �4	 ρ

�
E � .

(b) The internal activity of the last base is ρ
�
E � ,

while its external activity is equal to the number
of loops of M.
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Greene’s Theorem

Curtis Greene showed in 1975 that the weight
enumerator of C � C

�
A � is a specialisation of the

Tutte polynomial of M � M
�
A � :

Theorem 2

WC
�
x � y �$� yn & dim ' C ( � x 	 y � dim ' C ( T 5 M;

x 6 � q 	 1 � y
x 	 y

� x
y 7 �

In particular, the Tutte polynomial of M
�
A � determines

the minimum weight of C
�
A � .
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Duality

The dual of a matroid M on E is the matroid M 8 on E

whose bases are the complements of the bases of M.

The dual of a code C is the code

C 9:��� v � Fn : v � c � 0 for all c � C �;�
where � is the usual dot product.

Under the code–matroid connection, dual codes
correspond to dual matroids. Also, it is trivial that

T
�
M 8 ;x � y �$� T

�
M;y � x �<�

from which we obtain the MacWilliams relation

WC = � x � y �>� 1�C �WC
�
x 6 � q 	 1 � y � x 	 y �<�
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An example

Suppose that we are using the binary dual Hamming
code of length 7 to send information. The codewords
are:

0000000

0011011

0101101

0110110

1001110

1010101

1100011

1111000

The minimum weight is 4, so we can correct one
error and detect two errors.
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Analog errors

In practice, the received word is an analog signal,
sampled at seven time points, i.e. seven real
numbers. Suppose that we receive

w � � 	 0 � 1 � 0 � 0 � 0 � 2 � 0 � 9 � 1 � 8 � 0 � 9 � 1 � 4 ����? 7 �
If we round each value to the nearest of zero and
one, we obtain 0001111, which is at distance 2 from
the second, third and fifth codewords in the list, so
we have a decoding failure.

If we make the (physically realistic) assumptions that
the errors at the sampling points are independent
identically distributed Gaussian variables, then it can
be shown that the most likely codeword to have been
transmitted is the one at smallest Euclidean distance
from w in ? 7, which turns out to be 0101101.
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A trellis

A trellis for the dual Hamming code:

@�AB�CA @�AB�CC
@�AB�CB

@�AB�CG
@�AB�CF
@�AB�CE
@�AB�CD

@�AB�CZ

@�AB�CH@�AB�CI@�AB�CJ@�AB�CK@�AB�CL@�AB�CM@�AB�CN@�AB�CO

@�AB�CP
@�AB�CQ
@�AB�CR
@�AB�CS

@�AB�CT
@�AB�CU
@�AB�CV
@�AB�CW

@�AB�CX
@�AB�CY

D D D D D1E E E E E0

F F F F F
F F

1

G G G G G G G1

0

0

D D D D D
D D D D D
D D D D D
D D D D D

1

1

0

0

0

0

1

1

E E E E E1G G G G G G G0H H H H H H H H H H H0I I I I I I I I I I I I I I I
1

J J J J J
J J J J J J

0

F F F F F
F F

1

D D D D D1

0

0

0

G G G G G G G1F F F F F
F F

1

G G G G G G G0

G G G G G G G1F F F F F
F F

1

F F F F F
F F

0

E E E E E0

D D D D D1

The codewords are the sequences of labels on the
paths from A to Z.
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Trellis decoding

@�AB�CA0 K 00

@�AB�CC0 K 01

@�AB�CB1 K 21

@�AB�CG1 K 01

@�AB�CF0 K 01

@�AB�CE1 K 21

@�AB�CD2 K 21

@�AB�CZ2 K 67

@�AB�CH2 K 75

@�AB�CI2 K 25

@�AB�CJ1 K 75

@�AB�CK1 K 25

@�AB�CL0 K 05

@�AB�CM0 K 65

@�AB�CN1 K 05

@�AB�CO1 K 65

@�AB�CP0 K 86

@�AB�CQ0 K 66

@�AB�CR1 K 06

@�AB�CS1 K 26

@�AB�CT4 K 10

@�AB�CU3 K 90

@�AB�CV1 K 90

@�AB�CW1 K 70

@�AB�CX1 K 91

@�AB�CY2 K 51

D D D D D D1 K 21E E E E E E0 K 01

F F F F F
F F F

1 K 00

G G G G G G G G1 K 00

0 K 00

0 K 00

D D D D D D

D D D D D D

D D D D D D

D D D D D D

0 K 64

0 K 64

0 K 04

0 K 04

0 K 04

0 K 04

0 K 64

0 K 64

E E E E E E0 K 01G G G G G G G G0 K 81H H H H H H H H H H H H0 K 81

I I I I I I I I I I I I I I I I I
0 K 01

J J J J J
J J J J J
J J

0 K 81

F F F F F
F F F
0 K 01

D D D D D D0 K 01

0 K 81

3 K 24

3 K 24

G G G G G G G G
0 K 64

F F F F F
F F F0 K 64

G G G G G G G G0 K 81

G G G G G G G G
0 K 01

F F F F F
F F F

0 K 01

F F F F F
F F F

0 K 81

E E E E E E1 K 96

D D D D D D0 K 16

The shortest squared Euclidean distance from
received word to codeword is equal to the length of
the shortest path from A to Z. The shortest path is
ACGNRWYZ, and the decoded word is 0101101.
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Muder’s Theorem

The best trellis for a code will have the fewest
vertices or edges, or smallest cycle rank.

For a linear code, there is a trellis which is uniformly
best:

Theorem 3 Let C be a linear code of length n. Then
there is a trellis T representing C, with layers
V0 ��������� Vn, such that, if another proper trellis T � for C

has layers V �0 ��������� V �n, then �V �i �MLN�Vi � for i � 0 ��������� n.
Moreover, if �V �i �O�P�Vi � for i � 0 ��������� n, then T � is
isomorphic to T . Furthermore, T also minimises the
sizes of all the edge layers and the cycle rank.
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Past and future

For 0 " i " n, we define the ith past subcode of C to
be

Pi ��� c � C : c j � 0 for all j � i �;�
and the ith future subcode to be

Fi ��� c � C : c j � 0 for all j " i �;�
By convention, Pn � F0 � C.

If A and B denote the first and last bases for M, then

dim
�
Fi �Q�R�A S�� i 6 1 ��������� n �T� �

dim
�
Pi �Q�R�B S�� 1 ��������� i �T� �

Let Vi � C 
 � Pi U Fi � . For each codeword c, put an
edge with label ci from

�
Pi & 1 U Fi & 1 �V6 c � Vi & 1 to the

coset
�
Pi U Fi �V6 c � Vi. Identify edges with the same

label between the same vertices.

This is the Muder trellis for C.
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Equivalent codes

Equivalent codes may have Muder trellises of
different size. The problem of finding the smallest
Muder trellis for a code equivalent to C is
NP-complete in general.

However, using the matroid allows us to produce
bounds (or exact values) for many important codes.
We must order so that the first base is as late as
possible, and the last base as early as possible. Of
course, these requirements conflict.

For example, a code is MDS if and only the matroid is
uniform. In this case, regardless of permutations, the
first base is � 1 ��������� k � and the last base is� n 	 k 6 1 �������4� n � . So the trellis is as large as possible,
no matter how we permute coordinates.
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Hamming weight hierarchy

The ith generalised Hamming weight of a code C is
the smallest size di of the support of an i-dimensional
subcode of C. So, for example, d1 is the minimum
weight of C.

The Hamming weight hierarchy is
�
d1 � d2 ��������� dk � .

Note that it is determined by the Tutte polynomial.

Bounds for di can be obtained from the Griesmer
bound and other methods; for example,

di W 1 L di 6YX di
�
q 	 1 �

q
�
qi 	 1 �[Z �

Theorem 4 The first and last bases of the \ n � k ] code
C satisfy

ai " n 	 dk & i W 1
�
C �^6 1 � bi L di

�
C �<�

If these bounds are attained then the Muder trellis for
C is smaller than that for any equivalent code.
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The binary Golay code

The Hamming weight hierarchy for the extended
binary Golay code is� 8 � 12 � 14 � 15 � 16 � 18 � 19 � 20 � 21 � 22 � 23 � 24 �;�
The coordinates can be ordered so that this is the
last base, and the first base is its complement. So
the bounds of Theorem 4 are attained. Indeed, this
will hold as long as we ensure that�!� 1 � 2 � 3 � 4 �;�4� 5 � 6 � 7 � 8 �;�������_�4� 21 � 22 � 23 � 24 �!�
is a sextet.

(Since the code is self-dual, the complement of the
first base is the last base.)

Hence the smallest trellis for the extended binary
Golay code has 2686 vertices.
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