The countable homogeneous poset

Peter J Cameron
School of Mathematical Sciences
Queen Mary, University of London
London E1 4NS, U.K.
p.j.cameron@qmul.ac.uk

Conference on Groups and Model Theory
Leeds, 11 April 2003

This is a commentary on the preprint "On homogeneous graphs and posets" by Jan Hubička and Jaroslav Nešetřil Charles University, Prague, Czech Republic.

Recognising R

R is the unique countable graph with the property that, for any finite graphs G and H with $G \subseteq H$, every embedding of G in R extends to an embedding of H.

It is enough to require this when $|H|=|G|+1$: givn disjoint finite sets M_{0}, M_{1} of vertices, there is a vertex x joined to all vertices of M_{1} and none of M_{0}.

A similar characterisation holds for any countable homogeneous relational structure. Such a structure is determined by its class of finite substructures, this class having the amalgamation property (Fraïssé's Theorem).

The random graph

Erdős-Rényi Theorem There is a unique countable graph R with the property that a random countable graph X (obtained by choosing edges independently with probability $1 / 2$) satisfies $\operatorname{Prob}(X \cong R)=1$

The graph R is

- universal: every finite or countable graph is embeddable in R.
- homogeneous: any isomorphism between finite subgraphs of R extends to an automorphism of R.

These two properties characterise R.

Constructions of R

- Vertex set is a countable model of set theory; $x \sim y$ if $x \in y$ or $y \in x$.
- Vertex set is $\mathbb{N} ; x \sim y$ if the x th binary digit of y is 1 (or vice versa).
- Vertex set is the set of primes congruent to 1 $\bmod 4 ; x \sim y$ if x is a quadratic residue $\bmod y$.
- Vertex set is $\mathbb{Z} ; x \sim y$ if the $|x-y|$ th term in a fixed universal binary sequence is 1 .

Motivation

The Erdős-Rényi theorem is a non-constructive existence proof for R. This can be re-formulated in terms of Baire category instead of measure; in this form it applies to all countable homogeneous relational structures.

However, an explicit construction can give us more information.

For example, the fourth construction given earlier shows that R admits cyclic automorphisms (and, indeed, that the conjugacy classes of cyclic automorphisms of R are parametrised by the universal binary sequences).

Lachlan-Woodrow Theorem

Lachlan and Woodrow determined all the countable homogeneous graphs. Apart from trivial cases, these are the Henson graphs H_{n} for $n \geq 3$ and their complements, and the random graph. H_{n} is the unique countable homogeneous K_{n}-free graph which embeds all finite K_{n}-free graphs, where K_{n} is the complete graph on n vertices.

Take a countable model of set theory. Let X be the set of all sets which do not contain $n-1$ elements mutually comparable by the membership relation; put $x \sim y$ if $x \in y$ or $y \in x$. This graph is isomorphic to H_{n}. (This is essentially the same as Henson's original construction of his graphs inside R.)

Models of set theory

In showing that the first construction above gives R, we do not need all the axioms of ZFC: only the empty set, pairing, union, and foundation axioms.

Sketch proof: Let M_{0} and M_{1} be disjoint finite sets. Let $x=M_{1} \cup\{y\}$, where y is chosen so that it is not in M_{0} or in a member of a member of M_{0}. (This ensures that $z \notin x$ and $x \notin z$ for all $z \in M_{0}$.) Then x is joined to everything in M_{0} and nothing in M_{1}.

In particular, the Axiom of Infinity is not used. Now there is a simple model of hereditarily finite set theory, satisfying the negation of the axiom of infinity: the ground set is \mathbb{N}, and $x \in y$ if the x th binary digit of y is 1 . Thus the second construction is a special case of the first.

The generic digraph

There is a digraph analogue of R (countable universal homogeneous). Here is an explicit construction of it.

Take our model \mathbb{N} of hereditarily finite set theory.
Now put an arc $x \rightarrow y$ if $2 x \in y$, and $y \rightarrow x$ if $2 x+1 \in y$.
Given M_{0}, M_{+}, M_{-}with $M_{0} \cap\left(M_{+} \cup M_{-}\right)=\emptyset$, take

$$
x=\sum_{y \in M_{-}} 2^{2 y}+\sum_{y \in M_{+}} 2^{2 y+1}+2^{z}
$$

where z is sufficiently large. Then there are arcs from elements of M_{-}to x, and from x to elements of M_{+}, but none between x and M_{0}.

If we restrict to the set of natural numbers for which the $(2 i)$ th and $(2 i+1)$ st binary digits are not both 1 , for all i, we obtain the generic oriented graph.

Set theory with an atom

Take a countable model of set theory with a single atom \diamond. Now let M be any set not containing \diamond. Putt

$$
\begin{aligned}
& M_{L}=\{A \in M: \diamond \notin A\} \\
& M_{R}=\{B \backslash\{\diamond\}: \diamond \in B \in M\} .
\end{aligned}
$$

Then neither M_{L} nor M_{R} contains \diamond.
In the other direction, given two sets P, Q whose elements don't contain \diamond, let
$(P \mid Q)=P \cup\{B \cup\{\diamond\}: B \in Q\}$. Then $(P \mid Q)$ doesn't contain \diamond.

Moreover, for any set M not containing \diamond, we have $M=\left(M_{L} \mid M_{R}\right)$.

Note that any set not containing \diamond can be represented in terms of sets not involving \diamond by means of the operation (.|.)

For example, $\{\emptyset,\{\diamond\}\}$ is $(\{\emptyset\} \mid\{\emptyset\})$.

The generic digraph again

We define a directed graph as follows:

The vertices are the sets not containing \diamond.

If M, N are vertices, then we put an $\operatorname{arc} N \rightarrow M$ if $N \in M_{L}$, and an $\operatorname{arc} M \rightarrow N$ if $N \in M_{R}$.

Theorem This graph is the generic directed graph.
For if M_{+}, M^{-}and M_{0} are finite sets of vertices, with $\left(M_{+} \cup M_{-}\right) \cap M_{0}=\emptyset$, then we can find some z such that $x=\left(M_{-} \cup\{z\} \mid M_{+}\right)$has the correct arcs.

The generic poset

The construction of the generic poset is similar to that of the generic digraph just given. We restrict to a sub-collection \mathscr{P} of the sets M not containing \diamond defined by the following recursive properties:

Correctness: $M_{L} \cup M_{R} \subseteq \mathscr{P}$ and $M_{L} \cap M_{R}=\emptyset ;$
Ordering: For all $A \in M_{L}$ and $B \in M_{R}$, we have

$$
\left(\{A\} \cup A_{R}\right) \cap\left(\{B\} \cup B_{L}\right) \neq \emptyset .
$$

Completeness: $A_{L} \subseteq M_{L}$ for all $A \in M_{L}$, and $B_{R} \subseteq M_{R}$ for all $B \in M_{R}$.

Now we put $M \leq N$ if

$$
\left(\{M\} \cup M_{R}\right) \cap\left(\{N\} \cup N_{L}\right) \neq \emptyset .
$$

Theorem The above-defined structure is isomorphic to the generic poset.

Part of the proof

Note that $\emptyset=(\emptyset \mid \emptyset)$ is in \mathscr{P}; the conditions are vacuously satisfied.

First, some notation. We define the level $l(M)$ of an element $M \in \mathscr{P}$ by the rules that $l(0)=0$ and

$$
l(M)=\max \left\{l(A): A \in M_{L} \cup M_{R}\right\}+1
$$

for $M \neq 0$.
Also, if $M \neq N$, then any element of $\left(\{M\} \cup M_{R}\right) \cap\left(\{N\} \cup N_{L}\right)$ will be called a witness to $M<N$. Note the following:
(a) For $M \in \mathcal{P}$ and $A \in M_{L}, B \in M_{R}$, we have $A<M<B$.
(b) If $W^{M N}$ is a witness of $M<N$, then $M \leq W^{M N} \leq N$.
(c) If $W^{M N}$ is a witness of $M<N$, then either $l\left(W^{M N}\right)<l(M)$ or $l\left(W^{M N}\right)<l(N)$.

Part of the proof

Here is the proof of the transitive law. Let $A, B, C \in \mathcal{P}$ satisfy $A<B<C$, and let $W^{A B}$ and $W^{B C}$ be witnesses. First we show that $W^{A B} \leq W^{B C}$. There are four cases:

1. $W^{A B} \in B_{L}$ and $W^{B C} \in B_{R}$. Then $W^{A B}<W^{B C}$ by (a).
2. $W^{A B}=B$ and $W^{B C} \in B_{R}$. Then $W^{B C}$ witnesses $B<W^{B C}$.
3. $W^{A B} \in B_{L}$ and $W^{B C}=B$. Dual to 2 .
4. $W^{A B}=W^{B C}=B$. The result is clear.

In case $4, B$ witnesses $A<C$. In each of the other cases, if $W^{A C}$ witnesses $W^{A B}<W^{B C}$, then a little argument shows that $W^{A C}$ also witnesses $A<C$.

Surreal numbers

Surreal numbers, as defined by Conway in On Numbers and Games (and named by Knuth in Surreal Numbers), are objects of the form $X=\left(X_{L} \mid X_{R}\right)$, where every member of X_{L} and X_{R} is a surreal number, and every member of X_{L} is strictly less than every member of X_{R}. The ordering is defined by the rule that $A \leq Y$ if and only if $Y \not{ }_{s} z$ for all $z \in X_{L}$ and $z \not{ }_{s} X$ for all $z \in Y_{R}$. (Here we use $<_{s}$ for the ordering of surreal numbers, to distinguish it from the ordering in the poset \mathcal{P}.)

Now it is not too hard to prove the following statements:

- Every element of \mathcal{P} is a surreal number.
- If $M, N \in \mathcal{P}$ and $M<N$, then $M<{ }_{s} N$. In other words, the ordering on P induced by Conway's ordering on the surreal numbers is a linear extension of the poset ordering on P.

